

DATABASE ADMINISTRATION
DB2 STANDARDS

1 CMS DB2 Standards and Guidelines 12/8/2005

Overview __ 5
DB2 Database Design Standards __ 5

1.1 DB2 Design Overview__ 5
1.2 Databases__ 6

1.2.1 Object Usage __ 6
1.2.2 Required Parameters (DDL Syntax) __ 6

1.3 Tablespaces __ 7
1.3.1 Object Usage __ 7
1.3.2 Required Parameters (DDL Syntax) __ 9

1.4 Tables ___ 10
1.4.1 Object Usage ___ 10
1.4.2 Required Parameters (DDL Syntax) __ 11

1.5 Columns__ 11
1.5.1 Object Usage ___ 11
1.5.2 Required Parameters (DDL Syntax) _______________________________________ 12

1.6 Referential Constraints (Foreign Keys) __ 13
1.6.1 Object Usage ___ 13
1.6.2 Required Parameters (DDL Syntax) _______________________________________ 13

1.7 Table Check Constraints ___ 14
1.7.1 Object Usage__ 14
1.7.2 Required Parameters (DDL Syntax) _______________________________________ 15

1.8 Unique Constraints ___ 15
1.8.1 Object Usage ___ 16
1.8.2 Required Parameters (DDL Syntax) __ 16

1.9 ROWID __ 16
1.9.1 Object Usage ___ 17
1.9.2 Required Parameters (DDL Syntax) _______________________________________ 17

1.10 Identity Columns ___ 18
1.10.1 Object Usage ___ 18
1.10.2 Required Parameters (DDL Syntax) _____________________________________ 19

1.11 Views__ 20
1.11.1 Object Usage ___ 20
1.11.2 Required Parameters (DDL Syntax) _____________________________________ 20

1.12 Indexes___ 21
1.12.1 Object Usage ___ 21
1.12.2 Required Parameters (DDL Syntax) _____________________________________ 21

1.13 Table Alias__ 22
1.13.1 Object Usage ___ 23
1.13.2 Required Parameters (DDL Syntax) _____________________________________ 23

1.14 Synonyms __ 23
1.14.1 Object Usage ___ 23

1.15 Stored Procedures __ 24
1.15.1 Object Usage ___ 24
1.15.2 Required Parameters (DDL Syntax) _____________________________________ 24

1.16 User Defined Functions __ 26
1.16.1 Object Usage ___ 26

1.17 User Defined Types ___ 26
1.17.1 Object Usage ___ 26

1.18 Triggers __ 26
1.18.1 Object Usage ___ 26
1.18.2 Required Parameters (DDL Syntax) _____________________________________ 26

1.19 LOBs __ 27

2 CMS DB2 Standards and Guidelines 12/8/2005

1.19.1 Object Usage ___ 28
1.20 Buffer Pools___ 28

1.20.1 Object Usage ___ 28
1.20.2 Required Parameters (DDL Syntax) _____________________________________ 28

1.21 Space Requests __ 28
1.22 Capacity Planning __ 28

Application Programming___ 29
2.1 Data Access (SQL) ___ 29
2.2 Application Recovery ___ 31
2.3 Program Preparation __ 31

2.3.1 DB2 Package ___ 31
2.3.2 DB2 Plan __ 32
2.3.3 Explain__ 32

2.4 DB2 Development Tools ___ 32
2.4.1 SPUFI (SQL Processing Using File Input) __________________________________ 32
2.4.2 QMF (Query Management Facility) _______________________________________ 36
2.4.3 SAS __ 43
2.4.4 Quickstart/MVS ___ 46

Naming Standards ___ 51
3.1 Conventions for Objects and Datasets ___ 51

3.1.1 Standard Naming Format for DB2 Objects___________________________________ 52
3.1.2 Standard Application Identifiers ___ 61

3.2 DB2 Subsystem Names __ 61
3.3 Production Library Names__ 62
3.4 Test Library Names ___ 62
3.5 Image Copy Dataset Names___ 63
3.6 Utility Job Names __ 64
3.7 DB2/ORACLE Naming Issues __ 64

Security __ 64
4.1 DB2 Security Administration ___ 64

4.1.1 Development__ 65
4.1.2 Validation __ 69
4.1.3 Production__ 72

4.2 RACF Security Administration __ 75
4.2.1 Administering RACF Groups __ 75

4.3 Accessing DB2 Resources__ 79
4.3.1 Dynamic SQL Applications (SPUFI, SAS, QMF, DB2 Connect, etc.) _____________ 79
4.3.2 Static SQL Applications ___ 80
4.3.3 Execution Environments___ 80

Database Migration Procedures __ 81
5.1 DB2 Database Migration Overview __ 81
5.2 Preliminary Physical Database Design Review__________________________________ 81

5.2.1 Pre-Development Migration Review Checklist _______________________________ 84
5.3 Pre-Validation Migration Review __ 85

5.3.1 Pre-Validation Migration Review Checklist _________________________________ 87
5.4 Pre-Production Migration Review__ 88

5.4.1 Pre-Production Migration Review Checklist _________________________________ 90
Database Utilities __ 91

6.1 CMS Standard DB2 Utilities __ 91
6.2 How to Guides for BMC utilities___ 92

6.2.1 Compare DDL to DB2 Catalog ___ 92
6.2.2 Import CDL to Workid ___ 95

3 CMS DB2 Standards and Guidelines 12/8/2005

Database Performance Monitoring ___ 98
7.1 TOP 10 SQL Performance Measures__ 98

IBM Manuals and Publications ___ 100
Glossary __ 101

Glossary of Terms __ 101

4 CMS DB2 Standards and Guidelines 12/8/2005

Overview

This section describes steps necessary to evolve a logical data model into a physical
schema and ultimately to a set of physical database structures in DB2. At CMS, tools
have been identified to facilitate this process. CA/Platinum ERwin should be used to
translate the approved logical data model to a physical model and BMC Change
Manager should be used to implement data definitions generated from ERwin to DB2.

While developing the physical database design all standards must be followed, it is
imperative that care and consideration be given to the standards noted throughout
this DB2 Standards and Procedures document with regard to database object naming
conventions, appropriate database object usage, and required object parameter
settings. Although exceptions to the standards may be permitted, any deviation from
the standards must be reviewed with and approved by the Central DBA staff prior to
implementing into development.

DB2 Database Design Standards

1.1 DB2 Design Overview
Creating and maintaining objects in DB2 is a shared responsibility. Systems
Programmers are responsible for all system related objects including the catalogs,
directories, buffer pools, and other DB2 system resources. In the test subsystems,
Central DBAs create and maintain objects in preparation for subsequent use by
application development teams. These objects include storage groups, databases,
and application plans. In the test environments, the Local DBAs are responsible for
all database objects that will be utilized by their corresponding application.
Tablespaces, tables, aliases, indexes, and views are all created and maintained by
the local DBA

The following topics describe the standards Central and Local DBAs must follow when
implementing physical database objects in DB2. This information must be applied
even when the physical data model is developed and implemented using case tools,
such as ERwin and BMC.

5 CMS DB2 Standards and Guidelines 12/8/2005

1.2 Databases
A Database in DB2 is an object which is created to logically group other DB2 objects
such as tablespaces, tables, and indexes, within the DB2 catalog. Databases assist
with the administration of DB2 objects by allowing for many operational functions to
occur at the database level. DB2 commands such as -START DATABASE and -STOP
DATABASE, for example, allow entire groups of DB2 objects to be started and
stopped using one command.

See Standard Naming Convention.

1.2.1 Object Usage

STANDARD

Please refer to the roles and responsibilities documentation.

1.2.2 Required Parameters (DDL Syntax)

STANDARD

The parameters listed below must be included in the DB2 data definition language
(DDL) when defining an application database. DB2 default settings must not be
assumed for any of the following.

6 CMS DB2 Standards and Guidelines 12/8/2005

BUFFERPOOL
bpname

Provide a valid bufferpool designation for tablespaces. The default
value BP0 is used for the DB2 Catalog only Refer to the bufferpool
section of the doc.

STOGROUP
stogroup name

Specify a valid storage group. The storage group specified will
indicate the default storage group that will be assigned to any
tablespace or indexspace in the database only when that object
was created without a storage group specification. Do not specify
the default DB2 storage group (SYSDEFLT). Unauthorized
tablespaces residing in the SYSDEFAULT storage group will
be dropped without warning. See Standard Naming
Convention.

INDEXBP
bpname

Provide a valid bufferpool designation for indexes. The default
value BP0 is used for the DB2 Catalog only. Refer to the
bufferpool section of the doc.

CCSID encoding
scheme

Specify the default encoding scheme, typically this will be
EBCDIC.

1.3 Tablespaces

A tablespace is the DB2 object that holds data for one or more DB2 tables. It is a
physical object that is managed in DB2.

See Standard Naming Convention.

1.3.1 Object Usage

STANDARD

Assign one table per tablespace. An exception to this standard is for tables which are
primarily read-only edit/lookup tables containing a small number of rows (actual
table size is less than 720K).

Create tablespaces explicitly using the CREATE TABLESPACE command rather than
implicitly by creating a table without specifying a tablespace name.

Use DB2 storage groups to manage storage allocation for all application tablespaces.

Simple tablespaces are not supported at CMS.

Specify CLOSE YES for all tablespaces.

7 CMS DB2 Standards and Guidelines 12/8/2005

Specify LOCKSIZE ANY for all tablespaces that are not identified as 'read-only'. An
exception to this standard is when it is determined that all updates to the table are
performed in batch by a single job. In this case, LOCKSIZE table is recommended.
Due to the additional overhead associated with maintaining row-level locks, use of
LOCKSIZE ROW is permitted when a high level of application concurrency is
necessary. Additionally, the Central DBA staff must review and approve the use of
any LOCKSIZE option other than LOCKSIZE ANY.

Do not use the LARGE Parameter. Instead use the DSSIZE parameter for large
tablespaces.

For read-only tables, define tablespaces with PCTFREE, FREEPAGE of zero (0).

Specify PRIQTY and SECQTY quantities that fall on a track or cylinder boundary. On a
3390 device a track equates to 48K and a cylinder equates to 720K.

For tables over 100 cylinders always specify a PRIQTY and SECQTY to a number that
is a multiple of 720.

Only specify COMPRESS YES when it has been determined that significant storage
savings can be achieved by doing so. Typically, tablespaces containing primarily
character data will benefit more than those containing mainly numeric data. Since
data is compressed horizontally, tablespaces with longer average row lengths are
also good candidates for compression. When determining the appropriateness of
using DB2 compression, it is advisable to weigh the associated CPU overhead
(especially when modifying data) against the savings in storage utilization as well as
elapsed time for long running queries.

Partitioned Tablespace

When it is anticipated that a partitioned tablespace will hold more than 64 GB of data
or a single partition will contain more than 1 GB of data, either now or in the future,
include the DSSIZE parameter in the CREATE TABLESPACE command.

Define Partitioned tablespaces when it is anticipated that the number of rows in
tablespace will exceed one million rows, two gigabytes of storage or when it is
determined that partitioning the tablespace will yield performance benefit (i.e.
parallel query processing or independent partition utility processing.).

For partitioned tablespaces, specify LOCKPART YES to encourage DB2 to invoke
selective partition locking.

Segmented Tablespace

Define SEGSIZE as an even multiple of four (4), where the number chosen is closest
to the actual number of pages on a table stored in the tablespace.

Specify SEGSIZE 64 for all tablespaces consisting of greater than 64 pages of data.

8 CMS DB2 Standards and Guidelines 12/8/2005

For segmented tablespaces, be sure that PRIQTY and SECQTY allocations are not less
than the size of one segment. For example, if SEGSIZE is 64, both PRIQTY and
SECQTY should be no less than 256K (64 pages * 4K/page).

1.3.2 Required Parameters (DDL Syntax)

STANDARD

The parameters listed below must be included in the DB2 data definition language
(DDL) when defining an application tablespace. DB2 default settings must not be
assumed for any of the following.

IN database
name

Specified database must be a valid application database.
Application tablespaces must not be defined in the DB2 default
database. Unauthorized tablespaces residing in the DB2
default database, DSNDB04, will be dropped without
warning.

SEGSIZE When the tablespace is not a partitioned tablespace, specify the
size of each segment of pages within the tablespace. For most
tables, this value should be set to 64 This parameter is mutually
exclusive with NUMPARTS.

NUMPARTS
integer

When the tablespace is to be partitioned, specify the number of
partitions (datasets) that will comprise the entire tablespace. This
parameter is mutually exclusive with SEGSIZE.

USING
STOGROUP
stogroup name

Indicate the DB2 storage group on which the application
tablespaces will reside. Do not specify the default DB2 storage
group (SYSDEFLT). Unauthorized tablespaces residing in the
SYSDEFAULT storage group will be dropped without
warning. See Standard Naming Convention.

PRIQTY Primary quantity is specified in units of 1K bytes. Specify a
primary quantity that will accommodate all of the data in the
tablespace or partition.

SECQTY Secondary quantity is specified in units of 1K bytes. Specify a
secondary quantity that is consistent with the anticipated growth
of the table. The value specified should be large enough to
prevent the tablespace from spanning more that three extents
prior to the next scheduled REORG.

FREEPAGE Indicate the frequency in which DB2 should reserve a page of free
space on the tablespace or partition when it is reorganized or
when data is initially loaded. Note: The maximum value for
segmented tables is 1 less than the value specified for SEGSIZE.

PCTFREE Indicate what percentage of each page on the tablespace or
partition should be remain unused when it is reorganized or when
data is initially loaded.

9 CMS DB2 Standards and Guidelines 12/8/2005

COMPRESS Indicate whether DB2 should store data in the tablespace or
partition in a compressed format

LOCKPART YES For partitioned tablespaces, specify LOCKPART YES to encourage
DB2 to invoke selective partition locking (SPL).

BUFFERPOOL
bpname

Provide a valid bufferpool designation. Do not specify the default
bufferpool of BP0, consult the bufferpool standards or the Central
DBA staff.

LOCKSIZE Specify the size of lock DB2 will acquire when data on the
tablespace is accessed (see Object Usage standard above).

CLOSE Indicate whether DB2 should close the corresponding VSAM
dataset when no activity on tablespace is detected (see Object
Usage standard above).

DSSIZE Indicates the maximum data set size for each partition. A value in
gigabytes that indicates the maximum size for each partition or,
for LOB table spaces each data set. If you specify DSSIZE you
must also specify NUMPARTS or LOB.

1.4 Tables

A table in DB2 is a named collection of columns and rows. The data represented in
these rows can be accessed using SQL data manipulation language (select, insert,
update, and delete). Generally, it is a table in DB2 that applications and end-users
access to retrieve and manage business data.

See Standard Naming Convention.

1.4.1 Object Usage

STANDARD

Assign one table per tablespace. An exception to this standard is for tables which are
primarily read-only edit/lookup tables containing a small number of rows (actual
table size is less than 720K).

• Default tablespaces and databases must not be used. Tables must be created
in a tablespace which was explicitly created for the corresponding application.

• In conformance with relational theory, all rows of a table should be uniquely
identified by a column or set of columns to avoid the advent of duplicate
rows. It is therefore required that every table defined to DB2 includes a
primary key. If a table does not have a viable group of columns that can be
defined as a primary key, consult the Central DBA staff for direction.

10 CMS DB2 Standards and Guidelines 12/8/2005

http://www.cms.hhs.gov/it/database/db2standards/design/dd_02_g.asp

1.4.2 Required Parameters (DDL Syntax)

STANDARD

The parameters listed below must be included in the DB2 data definition language
(DDL) when defining an application table. DB2 default settings must not be assumed
for any of the following.

(column definition,
...)

List column specifications for each column that is to be defined
to the table (see Additional Table Definition Parameters below
for more details).

IN
database.tablespace

Specify the fully qualified tablespace name where data for the
table should be stored. Do not reference the DB2 default
database. Unauthorized tablespaces residing in the DB2
Default database, DSNDB04, will be dropped without
warning.

1.5 Columns

Columns in a DB2 table contain data that was loaded, inserted or updated by some
process. All columns have a corresponding datatype to indicate the format of the
data within. In addition to datatypes, other edits can be associated with columns in
DB2 in order to enforce defined business rule. These rules include default values,
check constraints, unique constraints, and referential integrity (foreign keys).

See Standard Naming Convention.

1.5.1 Object Usage

STANDARD

• Nulls should only be used when there is a need to know the difference
between the absence of a value versus a default value.

• The Central DA team should be consulted for a list of standard domains and
column definitions.

• Columns that represent the same data but are stored on different tables;
must have the same name, datatype and length specification. An example of
this is where tables are related referentially. If on a PROVIDER table, for
example, the primary key is defined as PROV_NUM CHAR(08), then
dependent tables must include PROV_NUM CHAR(08) as a foreign key
column.

• Columns that contain data which is determined to have the same domain
must be defined using identical datatype and length specifications. For
example, columns LAST_CHG_USER_ID and CASE_ADMN_USER_ID serve

11 CMS DB2 Standards and Guidelines 12/8/2005

http://www.cms.hhs.gov/it/database/db2standards/design/dd_02_43.asp
http://www.cms.hhs.gov/it/database/db2standards/design/dd_02_44.asp
http://www.cms.hhs.gov/it/database/db2standards/design/dd_02_42.asp

different business purposes, however both should be defined as CHAR (08) in
DB2. This standard applies to the entire enterprise and should not be
enforced solely at an application level.

• All columns containing date information must be defined using the DATE data
type.

• All columns containing time information must be defined using the TIME data
type.

• Specify a datatype that most represents the data the column will contain. For
numeric data, use one of the supported numeric data types taking into
account the minimum and maximum value limits as well as storage
requirements for each.

• For character data which may exceed 30 characters in length, consider use of
the VARCHAR datatype. This could provide substantial savings in storage
requirements. When weighing the benefits of defining a column to be variable
in length, consider the average length of data that will be stored in this
column. If the average length is less than 80% of the total column width, a
variable length column may be appropriate. If data compression is used on
the tablespace the central DBA should be contacted to determine if VARCHAR,
should still be used.

• Consider sequence of the column definitions to improve database
performance. Use the following as a guideline for sequencing columns on DB2
tables.

o Primary Key columns (for reference purposes only)

o Frequently read columns

o Infrequently read columns

o Infrequently updated columns

o Variable length columns

o Frequently updated columns

• For columns defined as DECIMAL be sure to use an odd number as the
precision specification to ensure efficient storage utilization. Precision
represents the entire length of the column, so in the definition DECIMAL
(9,2), the precision is 9.

• For columns with whole numbers SMALLINT and INTEGER should be used.

1.5.2 Required Parameters (DDL Syntax)

STANDARD

The parameters listed below must be included in the DB2 data definition language
(DDL) when defining columns in an application table. DB2 default settings must not
be assumed for any of the following.

12 CMS DB2 Standards and Guidelines 12/8/2005

Column name Provide a name for the column which conforms to DB2 Standard
Naming Conventions.

datatype
specification

Provide a datatype specification consistent with the
characteristics of the data the column will hold.

NOT NULL/
NOT NULL WITH
DEFAULT
[default value]

Indicate that a value or default value is required for the column.
Under some circumstances, this clause may not be required (see
Object Usage Standard above).

• For additional information see IBM’s Reference manuals.

1.6 Referential Constraints (Foreign Keys)

A referential constraint is a rule that defines the relationship between two tables. It
is implemented by creating a foreign key on a dependent table that relates to the
primary key (or unique constraint) of a parent table.

See Standard Naming Convention.

1.6.1 Object Usage

STANDARD

• Names for all foreign key constraints must be explicitly defined using data
definition language (DDL). Do not allow DB2 to generate default names.

• DDL syntax allows for foreign key constraints to be defined along side of the
corresponding column definition, as a separate clause at the end of the table
definition, or in an ALTER table statement. Each of these methods are
acceptable at CMS provided all of the required parameters noted below are
included in the definition.

• Avoid establishing referential constraints for read-only tables.

• Do not define referential constraints on tables residing in multi-table
tablespaces where the tables in the tablespace are not part of the same
referential structure.

• When possible, limit the number of levels in a referential structure (all tables
which have a relationship to one another) to three.

1.6.2 Required Parameters (DDL Syntax)

STANDARD

The parameters listed below must be included in the DB2 data definition language
(DDL) when defining a foreign key constraint in an application table. DB2 default
settings must not be assumed for any of the following.

13 CMS DB2 Standards and Guidelines 12/8/2005

constraint name Specify a name for the foreign key constraint based on the see
Standard Naming Convention.

(column name...) Indicate the column(s) that make up the foreign key constraint.
These columns must correspond to a primary key or unique
constraint in the parent table.

REFERENCES
table name

Specify the name of the table to which the foreign key constraint
refers. If the foreign key constraint is based on a unique
constraint of a parent table, also provide the column names that
make up the corresponding unique constraint.

ON DELETE
delete rule

Specify the appropriate delete rule which should be applied
whenever an attempt is made to delete a corresponding parent
row. Valid values include RESTRICT, NO ACTION, SET NULL, and
CASCADE. (Warning: Use of the CASCADE delete rule can result
in the mass deletion of numerous rows from dependent tables
when one row is deleted from the corresponding parent. No
response is returned to the deleting application indicating the
mass delete occurred. Therefore, strong consideration should be
given as to the appropriateness of implementing this rule in the
physical design.)

 * For additional information see IBM’s Reference manuals.

1.7 Table Check Constraints

A check constraint, (also known as a table or column constraint), is a rule defined to
a table which dictates how edits will be applied against data that is either inserted or
updated. The constraint rule is implemented using data definition language (DDL)
and can apply to a specific column or multiple columns on a table. Constraint rules
are always checked against one row of data at any point in time.

See Standard Naming Convention.

1.7.1 Object Usage

STANDARD

• Names for all check constraints must be explicitly defined using data
definition language (DDL). Do not allow DB2 to generate default names.

• DDL syntax allows for check constraints to be defined along side of the
corresponding column definition, as a separate clause at the end of the table
definition, or in an ALTER table statement. Each of these methods are
acceptable at CMS provided all of the required parameters noted below are
included in the definition.

14 CMS DB2 Standards and Guidelines 12/8/2005

http://www.cms.hhs.gov/it/database/db2standards/design/dd_02_44.asp
http://www.cms.hhs.gov/it/database/db2standards/design/dd_02_44.asp

• Several restrictions apply when defining check constraints on a table or
column. Refer to the DB2 SQL Reference manual for more details.

• Use caution when defining check constraints. Although DB2 will verify the
syntax of SQL commands, it will not verify the meaning. It is possible to
implement a check constraint that conflicts with other rules defined for the
table. For example, the syntax listed below would be accepted by DB2 even
though the column could never be inserted with a default value of 5.

CREATE table
DPP_TAB_A

(COL_1SMALLINT NOT NULL WITH DEFAULT 5

CONSTRAINT DPP013_COL1EDIT CHECK (COL_1 BETWEEN 10
AND 20))

• Verify that check constraint rules do not conflict with any defined referential
rules. For example, if a foreign key is defined as ON DELETE SET NULL and a
check constraint is defined on the foreign key column as a rule that would
prohibit nulls, DB2 will allow both rules to exist. However, any attempt to
delete a parent row will fail due to the check constraint on the dependent
table.

1.7.2 Required Parameters (DDL Syntax)

STANDARD

The parameters listed below must be included in the DB2 data definition language
(DDL) when defining a table check constraint in an application table. DB2 default
settings must not be assumed for any of the following.

CONSTRAINT
constraint name

Specify a name for the check constraint based on the Standard
Naming Convention.

CHECK
(condition)

Indicate the business rule using valid SQL syntax. This rule will
look similar to conditions expressed in an SQL WHERE clause.

* For additional information see IBM’s Reference manuals.

1.8 Unique Constraints
A unique constraint is a rule defined to a table which indicates that any occurrence
(row) in the table contains a distinct value in the column or combination of columns

15 CMS DB2 Standards and Guidelines 12/8/2005

that make up the constraint. The constraint rule is implemented using data definition
language (DDL) and can apply to a specific column or multiple columns on a table. A
unique constraint is similar to a primary key where both implement entity integrity
rules which state that each row in a table is uniquely identified by a non-null value or
set of values. The major difference between primary keys and unique constraints is
the fact that although only one primary key can be defined for one table, multiple
unique constraints can exist.

1.8.1 Object Usage

STANDARD

• Names for all unique constraints must be explicitly defined using data
definition language (DDL). Do not allow DB2 to generate default names.

• DDL syntax allows for unique constraints to be defined along side of the
corresponding column definition, as a separate clause at the end of the table
definition, or in an ALTER table statement. Each of these methods are
acceptable at CMS provided all of the required parameters noted below are
included in the definition.

• DB2 requires that a unique index be created to support each unique
constraint defined for a table. DB2 will mark a table as unusable until such an
index is created.

1.8.2 Required Parameters (DDL Syntax)

STANDARD

The parameters listed below must be included in the DB2 data definition language
(DDL) when defining a unique constraint in an application table.

Constraint-
name

Specify a name for the unique constraint based on the Standard
Naming Convention.

(column name,
...)

Specify the name of the column or list of columns which make up
the unique constraint.

1.9 ROWID

ROWID is a column data type that generates a unique value for each row in a table.
Using the ROWID column as the partitioning key may allow for random distribution
across partitions. DB2 will always generate the value for a ROWID column if
"GENERATED ALWAYS" is specified. ROWID has an internal representation of 19

16 CMS DB2 Standards and Guidelines 12/8/2005

bytes which never changes. The first two bytes are the length field followed by 17
bytes for the ROWID. The external representation of the ROWID is 40 bytes with the
RID appended(this changes with a REORG). ROWID values can only be assigned to a
ROWID column or ROWID variable. When using a host variable to receive a ROWID it
is necessary to declare the host variable as a ROWID for processing by the
precompiler:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 ABC-ROWID SQL TYPE IS ROWID,

EXEC SQL END DECLARE SECTION END-EXEC.

Assigning a character string to a ROWID you must first cast it to the ROWID data
type. Two ways in which to cast a CHAR, VARCHAR, or HEX literal

• CAST (expression AS ROWID)

• CAST (X’hex_literal’ AS ROWID)

1.9.1 Object Usage

STANDARD

• Table cannot have more than one ROWID column.

• Trigger cannot modify a ROWID column.

• ROWID column cannot be declared a primary or foreign key.

• ROWID column cannot be updated.

• ROWID column cannot be defined as nullable.

• Cannot have a ROWID column on a temporary table.

• ROWID column cannot have field procedures.

• ROWID column cannot have check constraints.

• Tables with a ROWID column cannot have an EDITPROC

• ROWID data type cannot be used with DB2 private protocol, can only be used
with DRDA.

• ROWID column is required for implementing LOBs.

1.9.2 Required Parameters (DDL Syntax)

STANDARD

The parameters listed below must be included in the DB2 data definition language
(DDL) when defining a ROWID column. DB2 default settings must not be assumed
for any of the following.

17 CMS DB2 Standards and Guidelines 12/8/2005

GENERATED BY
DEFAULT

DB2 accepts valid row ID’s as inserted values for a row.

DB2 will generate a value if none are specified.

Must define a unique single column index on the ROWID column
(cannot INSERT until created).

Recommended for tables populated from another table.

GENERATED
ALWAYS

DB2 will always generate value.

An index is not required if generated with this approach.

LOAD utility cannot be used to load ROWID values if the ROWID
column was created with the GENERATED ALWAYS clause.

This is the recommended approach.

* For additional information see IBM’s Reference manuals.

1.10 Identity Columns

A column type for generating unique sequential value for a column when a row is
added to the table. Sequential incrementing is not guaranteed if more than one
transaction is updating the table. For a unit of work that is rolled back, the allocated
numbers that have already been used are not reissued.

1.10.1 Object Usage

STANDARD

• Can have only one Identity column per table.

• Identity column do not allow nulls.

• Cannot have a FIELDPROC.

• Table(s) with an Identity column cannot have an EDITPROC.

• Use of "WITH DEFAULT" is not allowed.

• The data type of an identity column can be INTEGER, SMALLINT, or DECIMAL
with a scale of 0. The column can also be a distinct type based on one of
these data types.

• Issuing a recovery to a prior point in time will cause DB2 not to reissue those
values already used.

• CREATE table ... LIKE ... INCLUDING IDENTITY causes the newly created
table to inherit the identity column of the old table.

• The ALTER table statement can be used to add an identity column. If the
table is populated when the ALTER is issued, the table is placed in the REORG
pending state.

18 CMS DB2 Standards and Guidelines 12/8/2005

1.10.2 Required Parameters (DDL Syntax)

STANDARD

The parameters listed below must be included in the DB2 data definition language
(DDL) when defining an Identity column. DB2 default settings must not be assumed
for any of the following.

GENERATED BY
DEFAULT

An explicit value can be provided, if a value is not provided then
DB2 generates a value.

Uniqueness is not guaranteed except for previously DB2 generated
values. You can create an unique index to guarantee unique
values. If this is done, developers need to check for -803
SQLCODE indicating an attempt to insert a duplicate value in a
column with an unique index.

GENERATED
ALWAYS

DB2 will always generate a value, an explicit value cannot be
specified with an INSERT and UPDATE statement

AS IDENTITY This designates the column as an identity column. The column is
implicitly NOT NULL.

START WITH Only need to specify if the number is not "1" furthermore, must be
a valid number for the chosen data type. This number can be a
positive or negative number. If it is a positive number, it is an
ascending number. If it is a negative number, it is a descending
number.

INCREMENTED
BY

Value by which the Identity column will be incremented (1 is the
default). The value must be valid for the chosen data type.

CACHE 20 Preallocated values that are kept in memory by DB2 (the default is
20). The minimum value that can be specified is 2, and the
maximum is the largest value that can be represented as an
integer.

During a system failure, all cached Identity column values that are
yet to be assigned are lost, and thus, will never be used.
Therefore, the value specified for CACHE also represents the
maximum number of values for the identity column that could be
lost during a system failure.

NO CACHE No preallocated values are kept in memory by DB2. This is useful
if it is necessary to assign numbers in sequence as the rows are

19 CMS DB2 Standards and Guidelines 12/8/2005

inserted in a sysplex data sharing environment.

* For additional information see IBM’s Reference manuals.

1.11 Views

A View in DB2 is an alternative representation of data from one or more tables or
views. Although they can be accessed using data manipulation language (SELECT,
INSERT, DELETE, UPDATE), views do not contain data. Actual data is stored with the
underlying base table(s). Views are generally created to solve business requirements
related to security or ease of data access. A view may be required to limit the
columns or rows of a particular table a class of business users are permitted to see.
Views are also created to simplify user access to data by resolving complicated SQL
calls in the view definition.

See Standard Naming Convention.

1.11.1 Object Usage

STANDARD

View definitions must reference base tables only. Do not create views which
reference other views. Use views sparingly. Create views only when it is determined
that direct access to the actual table does not adequately serve a particular business
need. In general, views should not be required if the data on a table is not sensitive
and is only accessed using predefined SQL such as static embedded SQL.

1.11.2 Required Parameters (DDL Syntax)

STANDARD

The parameters listed below must be included in the DB2 data definition language
(DDL) when defining a view. DB2 default settings must not be assumed for any of
the following.

(column list, ...) List column names for each column that is to be defined to the
view. These names must conform to the DB2 Standard Naming
Convention for column names.

AS select
statement

Specify SQL select statement that defines this view. Do not
include existing views as part of the view definition. Do not
include a SELECT * ... as a select statement.

20 CMS DB2 Standards and Guidelines 12/8/2005

1.12 Indexes

An index is an ordered set of data values with corresponding record identifiers (RIDs)
which identify the location of data rows on a tablespace. An index is created for one
table and consists of data values from one or many columns on the table. When
created, one or more VSAM linear datasets used to hold the data and RID values is
also created. This physical object (dataset), known as an indexspace, can be
managed in DB2 using storage groups (DB2 Managed).

See Standard Naming Convention.

1.12.1 Object Usage

STANDARD

• Use DB2 storage groups to manage storage allocation for all indexes.

• Specify CLOSE YES for all indexes.

• Specify COPY YES for all indexes that will be Image Copied.

• For read-only tables, define indexes with PCTFREE, FREEPAGE.

• When creating an index on a table that already contains over 5,000,000 rows,
use the DEFER option then use a REBUILD INDEX utility to build the index. By
stating DEFER YES on the CREATE INDEX statement, DB2 will simply add the
index definition to the DB2 catalog; the actual index entries will not be built.
Using this method can significantly reduce the amount of resources needed to
create an index on a large table.

• One index on every table must be explicitly defined as the clustering index.

• Specify PRIQTY and SECQTY quantities that fall on a track or cylinder
boundary. On a 3390 device a track equates to 48K and a cylinder equates to
720K.

• For indices over 100 cylinders always specify a PRIQTY and SECQTY on a
cylinder boundary, or a number that is a multiple of 720.

1.12.2 Required Parameters (DDL Syntax)

STANDARD

The parameters listed below must be included in the DB2 data definition language
(DDL) when defining an index. DB2 default settings must not be assumed for any of
the following.

CLUSTER One index for each table must be designated as the clustering
index. Not doing so will cause DB2 to assume the first index
created on the table as the clustering index.

USING Indicate the DB2 storage group on which the indexspace will

21 CMS DB2 Standards and Guidelines 12/8/2005

STOGROUP
stogroup name

reside. Do not specify the default DB2 storage group (SYSDEFLT).
Unauthorized objects defined in the default storage group
will be dropped without warning. See Standard Naming
Convention.

PRIQTY Primary quantity is specified in units of 1K bytes. Specify a
primary quantity that will accommodate all of the index entries in
the table or partition (for partitioned indexes).

SECQTY Secondary quantity is specified in units of 1K bytes. Specify a
secondary quantity that is consistent with the anticipated growth
of the table or partition (for partitioned indexes). The value
specified should be large enough to prevent the indexspace from
spanning more that three extents prior to the next scheduled
REORG.

FREEPAGE Indicate the frequency in which DB2 should reserve a page of free
space on the indexspace when data is initially loaded to the table
or when the index or index partition is rebuilt or reorganized.

PCTFREE Indicate what percentage of each page on the indexspace should
be remain unused when data is initially loaded to the table or
when the index or index partition is rebuilt or reorganized.

BUFFERPOOL
bpname

Provide a valid bufferpool designation. The default value is BP0
which should never be used - it is reserved for the DB2 catalog.
Consult with the central DBA to determine the appropriate
bufferpool setting for your database objects.

CLOSE YES Indicate whether DB2 should close the corresponding VSAM
dataset when no activity on indexspace is detected (see Object
Usage standard above).

COPY Indicates Whether the COPY utility is allowed for this index. Valid
values are NO or YES.

1.13 Table Alias

A DB2 Alias provides an alternate name for a table or view that resides on the local
or remote database server. At CMS, aliases will be maintained to allow application
programs to reference unqualified table and view names.

22 CMS DB2 Standards and Guidelines 12/8/2005

See Standard Naming Convention.

1.13.1 Object Usage

STANDARD

Aliases are utilized in the development environments; see for details.

1.13.2 Required Parameters (DDL Syntax)

STANDARD

The parameters listed below must be included in the DB2 data definition language
(DDL) when defining an alias. DB2 default settings must not be assumed for any of
the following.

CREATE ALIAS
alias name

Specify an alias name consistent with the Standard Naming
Convention.

FOR
owner.tablename

Provide a fully qualified table name (creator.tablename) for the
corresponding table.

1.14 Synonyms

A DB2 Synonym is an alternate name an individual can assign to a table or a view.
After creating a synonym, the individual can refer to the unqualified synonym name
(name without a creator prefix). DB2 will recognize the unqualified name as a
synonym and will translate the synonym name to the actual fully qualified table or
view name (creator.name). With current releases of DB2, synonyms no longer
provide a significant benefit in a development environment and will not be supported
at CMS.

See Standard Naming Convention.

Synonyms are not supported at CMS. Standard naming conventions do not apply.

1.14.1 Object Usage

STANDARD

Applications developed and maintained at CMS must not reference DB2 synonyms.
Synonyms will not be supported in the validation and production environments.

23 CMS DB2 Standards and Guidelines 12/8/2005

1.15 Stored Procedures

A Stored Procedure is a compiled program defined at a local or remote DB2 server
that is invoked using the SQL CALL statement.

See Standard Naming Convention.

1.15.1 Object Usage

STANDARD

NOTE: Central DBA Approval Required
The use of Stored Procedures is closely governed by the Central DBA Group (CDBA).
The CDBA Group must approve all Stored Procedures, as part of the Database and
Pre-Validation Walkthroughs. The application is responsible for notifying the Central
DBA of the intent to use Stored Procedures and what purpose the Stored Procedures
will have, prior to developing and testing. This will include but is not limited to,
business requirements, type of access, and performance considerations.

• Stored Procedures will be maintained, migrated and compiled through
Endevor.

• Nested Stored Procedures are not permitted at CMS. After invoking the initial
stored procedure subsequent procedures should be invoked using application
language Call/Link statements. Nested Stored Procedure calls have been
proven to be inefficient.

• Close and commit statements must be executed in the invoking modules to
release held DB2 resources.

• Stored Procedures will be defined as STAYRESIDENT YES.

• Stored Procedures will be defined as PROGRAM TYPE SUB.

• All Stored Procedures will be defined with the FENCED parameter.

• All Stored Procedures will be defined to execute under the control of a Work
Load Manager environment.

1.15.2 Required Parameters (DDL Syntax)

STANDARD

The parameters listed below must be included in the DB2 data definition language
(DDL) when defining a Stored Procedure. DB2 default settings must not be assumed
for any of the following.

IN, OUT, INOUT Identifies the parameter as an input, output or input and output

24 CMS DB2 Standards and Guidelines 12/8/2005

parameter to the Stored Procedure.

DYNAMIC
RESULT SETS
integer

Specifies the number of query result sets that can be returned. A
value of zero indicates no result sets will be returned.

EXTERNAL NAME
procedure-name

Identifies the user-written program/code that implements the
Stored Procedure.

LANGUAGE Identifies the application programming language that the Stored
Procedure is coded in.

PARAMETER
STYLE

Specifies the linkage convention used to pass parameters to the
Stored Procedure.

FENCED Specifies that the Stored Procedure runs in an external address
space which prevents user programs from corrupting DB2
storage.

DBINFO Specifies whether specific information known by DB2 is passed to
the Stored Procedure when it is called.

COLLID Identifies the package collection that is used when the Stored
Procedure is called.

WLM
ENVIRONMENT

Identifies the MVS Workload Manager (WLM)environment that the
Stored Procedure is to run in.

STAY RESIDENT
YES

Specifies whether the Stored Procedure load module stays
resident in memory when the stored procedure terminates.

PROGRAM TYPE
SUB

Identifies if the Stored Procedure runs as a Main or a Subroutine.

SECURITY Identifies how the Stored Procedure interacts with RACF to
control access to non-DB2 resources. Only USER and DB2 are
allowed.

COMMIT ON
RETURN

Specifies if DB2 commits the transaction immediately on return
from the Stored Procedure.

25 CMS DB2 Standards and Guidelines 12/8/2005

1.16 User Defined Functions

A User Defined Function (or UDF) is similar to a host language subprogram or
function that is invoked in an SQL statement.

1.16.1 Object Usage
UDF’s are not yet a standard at CMS. If there is a need for a UDF, contact the
Central DBA for guidance.

STANDARD

* For additional information see IBM’s Reference manuals.

1.17 User Defined Types

A Distinct Type (or User Defined Data Type) is based on a built-in database data
type, but is considered to be a separate and incompatible type for semantic
purposes. Example: One could define a US_Dollar and Mexican Peso data types,
although they may both be defined as DECIMAL(10,2), the business may want to
prevent these columns from being compared to one another.

There are currently no written standards for UDTs. If there is a need for UDTs please
contact the Central DBA group for guidance.

1.17.1 Object Usage

STANDARD

* For additional information see IBM’s Reference manuals.

1.18 Triggers

A Trigger is a defined set of SQL defined for a table that executes when a specified
SQL event occurs.

See Standard Naming Convention.

1.18.1 Object Usage
STANDARD

1.18.2 Required Parameters (DDL Syntax)
STANDARD

26 CMS DB2 Standards and Guidelines 12/8/2005

The parameters listed below must be included in the DB2 data definition language
(DDL) when defining a Trigger. DB2 default settings must not be assumed for any of
the following.

ON table table-
name

Identifies the triggering table that the trigger is associated with.

FOR EACH ROW - Specifies that DB2 executes the trigger for each row of the
triggering table that the triggering SQL operation changes or
Inserts. STATEMENT - Specifies that DB2 executes the triggered
action only once for the triggering SQL operation.

WHEN Identifies a condition that evaluates to true, false, or unknown.

BEGIN AUTOMIC Specifies the SQL that is executed for the triggered action.

* For additional information see IBM’s Reference manuals.

1.19 LOBs

A large object is a data type used by DB2 to manage unstructured data. DB2
provides three built-in data types for storing large objects:

Binary Large Objects, also known as BLOBs can contain up to 2GB of binary data.
Typical uses for BLOB data include photographs and pictures, audio and sound clips,
and video clips.

Character Large Objects, also known as CLOBs can contain up to 2GB of single byte
character data. CLOBs are ideal for storing large text documents in a DB2 database.

Double Byte Character Large Objects, also known as DBCLOBs can contain up to 1GB
of double byte character data, for a total of 2GB. DBCLOBs are useful for storing text
documents in languages that require double byte characters, such as Kanji.

BLOBs, CLOBs, and DBCLOBs are collectively referred to as LOBs. The actual data
storage limit for BLOB, CLOBs, and DBCLOBs, is 1 byte less than 2 gigabytes of data.

ROWID column is required for implementing LOBs.

There are currently no written standards for LOBs. If there is a need for LOBs please
contact the Central DBA group for guidance.

27 CMS DB2 Standards and Guidelines 12/8/2005

1.19.1 Object Usage

STANDARD

* For additional information see IBM’s Reference manuals.

1.20 Buffer Pools

Buffer pools are areas of virtual storage where DB2 temporarily stores pages of table
spaces or indexes. When an application program requests a row of a table, the page
containing the row is retrieved by DB2 and placed in a buffer. If the requested page
is already in a buffer, DB2 retrieves the page from the buffer, significantly reducing
the cost of retrieving the page.

1.20.1 Object Usage

STANDARD

1.20.2 Required Parameters (DDL Syntax)

STANDARD

Bufferpools are assigned and created by the Software Support Group with Central
DBA input.

The Bufferpool assignments are listed below:

BP1 Large Tables (> 48000K or > 1000 tracks)

BP2 Large Indexes (> 48000K or > 1000 tracks)

BP3 Medium Tables ((> 240K and < 48000K) or (> 5 tracks and < 1000 tracks))

BP4 Medium Indexes ((> 240K and < 48000K) or (> 5 tracks and < 1000 tracks))

BP5 Small Tables (< than 240K or < than 5 tracks)

BP6 Small Indexes (< than 240K or < than 5 tracks)

1.21 Space Requests

It is the responsibility of the Project GTL to request necessary space from the DASD
team. The space required in each subsystem (all test environments and production)
must be delivered as part of the pre-development walk-through.

1.22 Capacity Planning

28 CMS DB2 Standards and Guidelines 12/8/2005

It is the responsibility of the Project GTL to schedule a meeting with Lockheed Martin
and the Central DBA team to discuss and plan for impacts a new system or major
modifications to an existing system will have on the CMS computer environments.
This includes but not limited to Development, Test, Performance Testing, Production,
etc.

Application Programming

2.1 Data Access (SQL)

STANDARD

The following is a list of SQL usage standards to which all application programs
developed and maintained at CMS must adhere.

General SQL Usage

• Application programs must not include data definition language (DDL) or data
control language (DCL) SQL statements.

• SQL statements must include unqualified table and view names only. At no
time should a table name be referenced from an application program using
the table creator as a prefix.

• SQL columns must be accessed with elementary data items. At no time
should host structures be referenced in an SQL statement. The use of group
level data items, or structures are only permitted to manipulate variable
length data or null indicators, (i.e., VARCHAR).

SQL Error Handling

• All application programs must check the value of SQLCODE immediately after
each executable SQL command is issued, to determine the outcome of the
SQL request. Depending on the requirements of the application program,
appropriate logic to handle all possible values of SQLCODE must be performed

• All application programs must utilize a CMS Standard SQL Error Handling
Routine calling DSNTIAR and formatting output to SYSOUT to handle all
unexpected DB2 error conditions that are not accommodated within the
application.

• Standard Error Handling Routines

• A complete list of SQLCODEs can be located in the DB2 Messages and Codes
or DB2 Reference Summary manuals.

DECLARE TABLE

29 CMS DB2 Standards and Guidelines 12/8/2005

• Table Declarations for all tables and views accessed must be generated using
the DB2 DCLGEN command.

• Table declarations must be stored individually as members in a Endevor
library. Table declarations will be expanded in application source code at
program preparation time using the EXEC SQL, INCLUDE command.

HOST VARIABLES

• Host Variable Declarations must be defined as elementary data items in the
Working-Storage section in Cobol programs. Group level data items as host
variables are only permitted to manipulate variable length data or null
indicators, (i.e., VARCHAR).

DECLARE CURSOR

• DECLARE CURSOR statements must be defined in the Working-Storage
section in Cobol programs.

• Since cursor definitions include a valid SQL SELECT statement, DECLARE
CURSOR statements must also adhere to the SELECT statement standards.

• Cursor declarations for read-only cursors must include the FOR FETCH ONLY,
to make use of block fetching (improved I/O).

• Cursor declarations for cursors which will retrieve a small number of rows,
must include the OPTIMIZE FOR 1 ROWS clause to avoid sequential prefetch
processing (increased I/O).

SELECT

• SELECT statements must include an explicit list of column names and
expressions, which are being retrieved from DB2. Asterisks (*) are only
permitted in SELECT statements under the following circumstances:

o 1. When using the SQL COUNT column function to determine a number
of rows (SELECT COUNT(*) FROM table-name...); or

o 2. When coding a subselect to determine the existence of a condition
(... WHERE EXISTS (SELECT * FROM table-name ...)).

INSERT

• INSERT statements must use the format of a column list with corresponding
host variables for each column. INSERT INTO tablename (col1, col2, col3,...)
VALUES (:hvar1, :hvar2, :hvar3...)

LOCK table

30 CMS DB2 Standards and Guidelines 12/8/2005

• Due to the adverse affect on concurrent usage of DB2 resources, the use of
the LOCK table command is limited. Use of the LOCK table statement must be
approved by the Central DBA staff when it is required to achieve improved
performance or data integrity.

CLOSE CURSOR

• All application programs designed to process SQL cursors must execute a
CLOSE CURSOR statement for every corresponding OPEN CURSOR.

2.2 Application Recovery

To achieve a high level of data recoverability and application concurrency, all DB2
application programs updating data, (INSERT, DELETE, UPDATE), will incorporate
logical unit of work processing. Application logic will clearly identify begin and end
points for sets of work which must be processed as a whole. Commit and rollback
commands will be incorporated where appropriate.

Additionally, all batch DB2 application programs will include abend/restart logic
which will minimize the impact to DB2 resources as well as the allotted batch
processing window in the event of an application failure.

Quickstart/MVS from BMC is the standard development tool that must be used at
CMS in order to comply with this standard.

2.3 Program Preparation

2.3.1 DB2 Package

All DB2 application programs developed and maintained at CMS are bound to DB2 as
packages and are included in DB2 plans using the PKLIST parameter in the BIND
PLAN statement. Application programs are normally bound as part of the Endevor
procedures.

Additionally, all DB2 packages must be bound using an ISOLATION level of 'CS'
(cursor stability). Specifying any other isolation level, such as repeatable read (RR)
or uncommitted read (UR) requires approval of the Central DBA staff.

The following is an example of BIND PACKAGE syntax which should be used to create
DB2 packages at CMS:

BIND PACKAGE (collection-id) -

 OWNER(DEV$xxx) -

 QUALIFIER(DBA$DBxx) -

31 CMS DB2 Standards and Guidelines 12/8/2005

http://www.cms.hhs.gov/it/database/db2standards/app_prog/ap_07_4.asp

 MEMBER(program-name) -

 RELEASE(COMMIT) -

 ISOLATION(CS) -

 ACTION(REPLACE) -

 EXPLAIN(YES)

2.3.2 DB2 Plan

All DB2 applications developed and maintained at CMS will implement DB2 plans
which contain a list of DB2 packages only. Use of the MEMBER parameter in the
BIND PLAN statement to include DBRM members is prohibited.

Additionally all DB2 plans must be bound using an ISOLATION level of 'CS' (cursor
stability). Specifying any other isolation level, such as repeatable read (RR) or
uncommitted read (UR) requires approval of the Central DBA staff.

2.3.3 Explain

One set of Plan tables will be created by the Central DBA group for each application
development RACF group (ex DEV$NPS). Endevor will produce explain reports for
Central DBA review as part of the Endevor migrations.

2.4 DB2 Development Tools

2.4.1 SPUFI (SQL Processing Using File Input)

A TSO facility, SPUFI (SQL Processing Using File Input), is provided with every
installation of DB2 which allows users to execute SQL statements interactively. As it
is named, SPUFI reads, as input, a dataset containing one or many SQL statements.
SPUFI sends these statements to DB2 for execution and writes the results of the
execution to another dataset which SPUFI then presents in a ISPF Browse session for
inspection. SPUFI is a valuable development tool, in that it allows you to test SQL
statements, create or verify test data, and review application data structure formats.

To use SPUFI, choose option D;I from the CMS ISPF/PDF Primary Option Menu. From
the DB2I Primary Option Menu, choose option 1 for SPUFI.

Define Execution Environment:

Below is a sample of a SPUFI primary panel. It is used to control the execution flow
of your SPUFI session. Fields 1 through 3 identify the name of the dataset which will
contain the SQL script to be processed, (typically a member of a partitioned dataset).
The name of the dataset where SPUFI should write the results of the SQL processing
must be provided in field 4. The dataset specified in this field will be deleted and
redefined each time SPUFI executes an SQL script. Fields 5 through 9 define the
execution environment. Field 10 is used to indicate the remote DB2 location where

32 CMS DB2 Standards and Guidelines 12/8/2005

the SQL should be processed. In most cases this field should remain blank. The
purpose of each field is described in detail in Chapter 2-5 of the DB2 Applications
Programming and SQL Guide.

To execute SQL using SPUFI, enter all required information in the SPUFI primary
panel. At a minimum, specify the name of the dataset which will contain the SQL
statements in field 1 and the name of the dataset SPUFI should allocate to write
output results in field 4. Verity that the processing options in fields 5 through 9 are
as desired and press the Enter key to continue.

Changing Defaults:

Depending on your needs, it is sometimes necessary to change the default settings
for your SPUFI session. By placing a 'YES' in field 5 SPUFI primary panel, SPUFI will
present the following Defaults panel once the Enter key has been pressed.

33 CMS DB2 Standards and Guidelines 12/8/2005

This panel is used to change SPUFI settings such as the allocation parameters for
your output dataset and limiting parameters such as the maximum number of rows
SPUFI should return from a single select statement and maximum field widths that
should be displayed. Most importantly, this panel allows you to select an ISOLATION
LEVEL for your SPUFI session. ISOLATION LEVEL indicates to DB2 at what duration
should it retain a hold on data while you are reading it through SPUFI. The value you
provide in this field has a major impact on the availability of the data you are reading
to other DB2 users and applications.

STANDARD

At CMS, ISOLATION LEVEL must be set to Cursor Stability (CS) for the duration of a
SPUFI session to ensure the highest level of concurrent read access to DB2 data.

To modify the default settings for you SPUFI session, make the desired changes in
the appropriate field on the Current SPUFI Defaults panel and press the Enter key.

Input Dataset:

Prior to reading the input dataset specified on the SPUFI primary panel, SPUFI will
give you an opportunity to edit this dataset by presenting it to you though an ISPF
edit session (see example below). One or more SQL statements can be entered in
the input dataset. Each statement must be delimited with a semicolon (;). Comments
are also permitted in a SPUFI script and are indicated by a double-hyphen (--) at the
beginning of the comment text.

34 CMS DB2 Standards and Guidelines 12/8/2005

Once you are satisfied with the input SQL, press PF3 to save the data and to return
to the SPUFI primary panel. Press enter again to execute the SQL script and to view
the results.

SQL Results:

While executing the SQL script, SPUFI writes the results from DB2 to the output
dataset specified in field (4) of the SPUFI primary panel. This dataset is presented in
an ISPF browse session for you to review once SPUFI is complete. Below is an
example output that would be presented by SPUFI.

In addition to the expected output (i.e., result set from a SELECT statement), SPUFI
also provides other information to indicate the status of the execution. When
relevant, it will indicate the number of rows in a table that were affected by the
previous SQL statement, the SQLCODE received from DB2 for each issue SQL
statement, whether or not a COMMIT was performed, number of input records read
from the SQL script, number of output records written to the output dataset, etc.

Caution: When evaluating the results of a SPUFI execution, be sure to review all of
the results carefully. SPUFI will discontinue processing an SQL script the first time it
encounters an error condition (i.e., SQLCODE < 0).

35 CMS DB2 Standards and Guidelines 12/8/2005

2.4.2 QMF (Query Management Facility)

QMF is an ISPF facility which is available to simplify access to data stored in DB2.
Typically, QMF is used to quickly generate formatted reports to fulfill adhoc requests.
However it can also be used to develop elaborate reporting applications which run
frequently in a production environment.

The following sections describe two methods of using QMF, both of which support
interactive and batch activity. When using QMF to run adhoc queries, either method
can be used. However, when it is anticipated that the QMF application you are
developing will be migrated to production, the procedures noted under QMF
Application Development must be used.

2.4.2.1 QMF Adhoc Usage
A facility is available at CMS which provides a quick and easy method to generate
formatted reports based on information stored in DB2. This facility, QMF, is an ISPF
application which can be run interactively and in batch. The following describes basic
procedures to run a query and produce a report (in a default format) from an
interactive QMF session. For more information on executing QMF in batch at CMS,
see QMF Application Development (QMF Import Facility) section of this document. To
learn more about QMF features including formatting reports, please refer to the QMF
Learner's Guide and QMF Advanced User's Guide.

QMF Panels

The QMF interactive environment consists of six separate panel areas (Home, Proc,
Query, Form, Report, and Profile). The QMF Home Panel is the first panel that is
displayed when you enter a QMF session. From this panel, it is possible to enter QMF
commands (such as LIST tables, or RUN QUERY). This panel can also be used to
navigate to other QMF panels as well, through either DISPLAY commands or PF keys.

36 CMS DB2 Standards and Guidelines 12/8/2005

The Proc Panel provides an area to input and execute a QMF procedure (a list of QMF
commands). The Query Panel is similar to the Proc panel in appearance only. It
provides an open area to allow you to enter an SQL command. (Note the primary
difference between QMF procs and queries is SQL are entered in queries and QMF
commands are entered in procs). The Form Panel is used to format reports based on
data retrieved through a query. QMF uses the Report Panel to merge the data
retrieved by a query with the form definition in the Form panel to display a formatted
output. The Profile Panel contains information regarding environmental settings for
the QMF session. These values can be modified.

Running a Query

To run a query in QMF, you must enter the SQL statement on the QMF Query Panel.
To access the query panel, enter DISPLAY QUERY on the QMF command line, or
press PF6. A QMF query is an object which can be saved. It can consist of only one
SQL statement therefore delimeters (like semicolons (;)) are not necessary. Once
the desired SQL statement is entered in the query panel, it can be executed by
pressing the PF2 key or entering the QMF RUN QUERY command. The following is an
example of a QMF Query panel.

If the query runs successfully, a default report form will be generated and will be
merged with the result set from the query. The merged results will be displayed on
the QMF Report panel. Below is a default report format for the query above.

37 CMS DB2 Standards and Guidelines 12/8/2005

Formatting a Report

The above report was generated by QMF by default when the query was first
executed. The format of this report can be modified using QMF Form panels. The
Form panel can be accessed by entering the QMF DISPLAY FORM command or
pressing PF9 from the Query or Report panels. Details on modifying report formats
can be found in the QMF Learner's Guide. Below is an example of a formatted report
generated from the same result set noted above.

38 CMS DB2 Standards and Guidelines 12/8/2005

2.4.2.2 QMF Application Development (QMF Import
Facility)

The QMF Import Facility is a facility available in-house which simplifies the task of
developing, enhancing, testing, and migrating QMF applications. This facility allows
QMF applications (procs, queries, and forms) to be stored in PDS libraries and
imported to the QMF environment at execution time. By using this method,
applications development teams can greatly improve their ability to manage and
maintain their QMF applications. Rather than storing these applications in a DB2/QMF
database for each DB2 subsystem where that application can be run, the application
can be stored in one set of external libraries and referenced from any DB2
subsystem. Additionally, because these applications are stored in PDS libraries, they
can be managed using the CA-Endevor configuration management tool.

The import facility can be initiated through a batch job, clist, rexx, or from an
interactive QMF session. It is initiated by executing a QMF procedure,
DBA.P_QMF_INIT. The method to initiate this proc differs depending on the current
execution environment. Each method is described below.

Interactive Execution

To run the initial import facility procedure from an interactive QMF session, type one
of the following commands at the QMF command line:

RUN DBA.P_QMF_INIT or QMFINIT

Upon entering either of the above commands, you will receive the following prompt
panel. Use this panel to enter all required input parameters.

After you enter the required fields and press enter. The specified QMF procedure will
be imported from one of three QMF application libraries, (test, validation or
production), depending on the specified MODE. The application procedure will then

39 CMS DB2 Standards and Guidelines 12/8/2005

be executed. If the QMF import facility is unable to locate the procedure in the library
specified, an error message will be displayed and the QMF session will be returned to
the QMF HOME panel.

If the imported QMF application contains any substitution variables, an additional
prompt panel will be displayed to accept values for each. See Developing QMF
Applications for more details.

Batch Execution

A JCL procedure was developed to allow you to execute QMF applications in batch.
The procedure, (QMFBATCH), is designed to invoke the QMF Import Facility
automatically. To run the import facility in batch, set up JCL to execute QMFBATCH
and provide all required input parameters . Note that the list of parameters must be
provided in either a file or instream list allocated to the QMFPARMS DD. The following
is an example of run JCL which will generate a formatted EXPLAIN report in batch:

In addition to the required parameters (MODE and PROC), values for all substitution
variables present in the QMF application must also be provided in the QMFPARMS
file. See Developing QMF Applications for more details.

Clist Execution

From within a clist the facility can be initiated by running the following statement:

ISPEXEC SELECT PGM(DSQQMFE) NEWAPPL(DSQE)
PARM(S=subsys,M=B,I=DBA.P_QMF_INIT)

Because it is necessary to provide required input parameters when invoking the
import facility, a file (QMFPARMS) must be allocated to the TSO session prior to
executing the above command. . This file must contain at a minimum two
parameters (PROC and MODE). If the QMF application to be executed also contains
substitution variables, values for each must be provided in this file as well. See
Developing QMF Applications for more details

Rexx Execution

40 CMS DB2 Standards and Guidelines 12/8/2005

The QMF Import Facility can also be initiated from within a Rexx exec. QMF provides
a Callable Interface Language that can be invoked from Rexx and other application
programming languages. This feature allows applications to establish a persistent
connection to QMF in order to execute QMF commands. More detailed information on
the callable interface can be found in the Developing QMF Applications manual.

To use the QMF Import Facility from Rexx, the following steps must be performed:

1. Establish a connection to QMF

 From Rexx, issue a statement similar to the following to start a QMF session

 call dsqcix 'START (DSQSMODE=INTERACTIVE DSQSSUBS=DB2T DSQADPAN=0'

2. Set required input parameters.

 Issue QMF commands from the Rexx callable interface to establish values for
PROC and MODE.

 call dsqcix 'SET GLOBAL (PROC= PEXPLAIN MODE=PROD'

3. Set values for the any other substitution variables.

 Issue QMF commands from the Rexx callable interface to establish values for
other variables used in the QMF application

 call dsqcix 'SET GLOBAL (PACKAGE=(''SAMPPGRM'') OWNER=(DBA$DB2T)'
* Note: When passing a quote (') to QMF from Rexx, it is necessary to pass two

consecutive single quotes.

4. Execute the QMF Import Facility.

 Issue QMF commands from the callable interface to execute the application using
the QMF Import Facility.

 call dsqcix 'RUN PROC DBA.P_QMF_INIT'

2.4.2.3 Developing QMF Applications
Methods used to develop QMF procedures which will utilize this facility differ slightly
from those described in the QMF Adhoc Usage section. The primary difference is that
all QMF objects developed in QMF will ultimately be stored in external PDS libraries.

A general guideline to follow when developing applications in this manner is to
develop and modify all queries and forms from an interactive QMF session. Instead of
issuing a QMF SAVE command to store the objects in the QMF environment, issue a
QMF EXPORT command to export the query or form to a PDS. Test these objects by
developing a QMF proc which will import the queries and forms from the libraries.
Once you are satisfied with your results, export the proc to a PDS library and use the
procedures noted above to test the application using the QMF Import Facility.

Below is a sample of a QMF proc which will import a query and a report form to
generate and print a formatted EXPLAIN report.

41 CMS DB2 Standards and Guidelines 12/8/2005

Note that in this example the procedure will pass substitution variables to the query
as it is executed. A value for each variable must be provided when this proc is
invoked. The QMF Import Facility provides the ability to pass these values
interactively by presenting a prompt panel, or in batch by accepting the values in a
parameter file (QMFPARMS).

Required Input Parameters

The following parameters must be provided when invoking the QMF Import Facility.
Depending on the execution environment (interactive or batch) you may be
prompted to provide this information or will be required to provide it through a set of
control cards.

Parameter Description

PROC= Name of the PDS member containing the lead QMF application
procedure.

MODE= Indicates the state of the application (test, validation, or production).
This parameter determines the location of the lead QMF application
procedure. Valid values are DEVL, TEST, VALD, and PROD.

When providing these parameters through a set of control cards, the following rules
must be followed:

• The first two records of the control card file must contain MODE and PROC
parameters (one entry per record). The order of these two records is not
important.

• Each parameter name must begin in position 1 followed by an equal sign (=)
and a value.

• Embedded spaces are not permitted.

• All values for substitution variables in the application procedure must be
provided in the records following the MODE and PROC control cards. Values

42 CMS DB2 Standards and Guidelines 12/8/2005

for substitution variables must be specified in the same format required when
passing variables in an interactive QMF session.

QMF Application Libraries

Mode PDS Library

TEST ASCM.#ENDVOUT.COMMON.QMFPROCS.DEVQPROC

VALD ASCM.#ENDVOUT.COMMON.QMFPROCS.VALQPROC

PROD ASCM.#ENDVOUT.COMMON.QMFPROCS.PRDQPROC

2.4.3 SAS

A SAS procedure is available at CMS which allows access to data stored in DB2. This
SQL procedure (PROC SQL) includes a "Pass-Through" facility which passes SQL
statements from a SAS application directly to the intended database management
system. Any valid SQL statement can be issued to DB2 using this facility, therefore it
is possible to read as well as modify data in DB2 using the methods described below.

2.4.3.1 DB2/SAS Basics

To access DB2 from a SAS routine, use the PROC SQL procedure. This procedure
supports four primary commands which allow you to send any valid SQL statement
to DB2 for execution. These commands include:

CONNECT

DISCONNECT

SELECT/CONNECTION TO

EXECUTE

The CONNECT and DISCONNECT commands are used to establish and terminate
conversations with DB2 from the SAS application. The SELECT command with the
CONNECTION TO component is used to retrieve data from DB2. All other non-
SELECT SQL statements are sent to DB2 using the EXECUTE command.

2.4.3.2 Connecting to DB2

Regardless of whether a SAS application is reading or modifying data in DB2, a
CONNECT command must be issued within the PROC SQL procedure in order to
establish a connection with a particular DB2 subsystem. As an example, the following
statements could be used to connect to the test DB2 subsystem at CMS.

PROC SQL;

43 CMS DB2 Standards and Guidelines 12/8/2005

CONNECT TO DB2 (SSID=DB2T);

Once this command is executed, the application will remain connected to the DB2
subsystem until an implicit or explicit DISCONNECT command is issued (see
Disconnect from DB2 for more information). Connecting to multiple DB2 subsystems
within the same PROC SQL procedure is not supported.

2.4.3.3 Disconnecting from DB2

As stated above, once a connection is made to DB2 from a PROC SQL procedure, the
connection will remain until an explicit DISCONNECT command is issued or until SAS
implicitly terminates the connection. SAS will implicitly disconnect from DB2 when it
has encountered the next PROC or DATA statement in the application flow or when
the end of the application has been reached. To explicitly disconnect from DB2, issue
the following SAS command:

DISCONNECT FROM DB2;

2.4.3.4 Reading DB2 Data

The CONNECTION TO component of the SELECT command is used to read DB2 data
from SAS. It indicates to SAS to which database connection should the SELECT
statement be directed. Since DB2 on the mainframe limits the number of connections
from within a PROC SQL procedure to one, the database name or alias specified in
the CONNECTION TO component must be the same as what was specified in the
previous CONNECT TO statement. The following is an example of a SELECT
statement that will select rows from a DB2 table.

SELECT * FROM CONNECTION TO DB2

(SELECT * FROM SAMP.EMP WHERE DEPTNO = 20);

The first part of the above statement (SELECT * FROM CONNECTION TO DB2) is a
SAS command. It will select records from the second part of the statement (the DB2
query enclosed in parenthesis). Any valid DB2 SELECT statement can be issued in
this query portion of the statement. SAS limits the length of a query that it sends to
DB2 to 200 characters.

When SAS passes a command like the example above to DB2, the command will be
executed dynamically and the results of the query (if any) will be written to an
output listing. The data is not sent back to SAS for further processing. In order to
retrieve rows of data from DB2 into a SAS application, a SAS view must be created.
The following statement illustrates this feature.

CREATE VIEW EMPDATA AS

44 CMS DB2 Standards and Guidelines 12/8/2005

SELECT * FROM CONNECTION TO DB2

(SELECT * FROM SAMP.EMP WHERE DEPTNO = 20);

The above command will retrieve rows from DB2 based on the specified query
(enclosed in parenthesis) and will place each row as records in the SAS view
EMPDATA. EMPDATA will by default contain one field for every column selected in the
DB2 query. When using the SAS CREATE VIEW statement, DB2 will not produce an
output listing of the query results.

2.4.3.5 Receiving DB2 Error Messages

When an SQL command is executed in DB2 from SAS, messages from DB2 regarding
the success or failure of the command are passed back to SAS. After each SQL
command is executed in DB2, SAS will move return codes and possibly descriptive
text to two SAS macro variables:

SQLXRC DB2 SQLCODE

SQLXMSG DB2 SQLCODE and corresponding text message describing the
error. (Only populated when an error condition is detected).

The contents of these variables can be viewed by referencing them immediately after
DB2 executes an SQL statement. For example, to print the contents of SQLXRC after
issuing a SELECT statement an application could be coded as such:

SELECT * FROM CONNECTION TO DB2

(SELECT * FROM SAMP.EMP WHERE DEPTNO = 20);

%PUT &SQLXRC

Or, if the application uses SAS views:

CREATE VIEW EMPDATA AS

SELECT * FROM CONNECTION TO DB2

(SELECT * FROM SAMP.EMP WHERE DEPTNO = 20);

DISCONNECT FROM DB2;

PROC PRINT DATA=EMPDATA;

%PUT &SQLXRC

Note that in the latter example, the reference to &SQLXRC is made immediately after
the view (EMPDATA) is accessed. This is because the DB2 query that corresponds to
this view is not executed until SAS makes its first reference to the SAS view.

45 CMS DB2 Standards and Guidelines 12/8/2005

2.4.3.6 Modifying DB2 Data

The EXECUTE command in SAS allows an application to execute non-SELECT
statements against data in DB2. The format of an EXECUTE statement is as follows:

EXECUTE (sql statement) BY DB2;

To use this command, the application must first connect to the target DB2
subsystem. As with the SELECT statement, it is possible to view the result of the
executed SQL statement by inspecting the macro variables, SQLXRC and SQLXMSG.

2.4.4 Quickstart/MVS

Quickstart/MVS is a tool from BMC Software that allows batch application programs
to synchronize resources (sequential files, DB2 tables, etc.) it utilizes while
processing. This tool provides uniform processing logic to allow batch application
programs to be restarted in the event of an application failure. The tool acts much
like a DBMS in that checkpoints can be issued during program execution to record
the completion of a unit of work. If the application ends abnormally, processing can
resume at the last previously recorded checkpoint.

Many approaches can be used to incorporate the Quickstart/MVS tool in an
application. The following documents procedures which can be used to include this
tool with batch DB2 application programs. Since the primary focus of this information
is on synchronizing DB2 resources, please refer to the Quickstart/MVS User Guide for
details on the product use with resources outside of DB2

2.4.4.1 Overview

Quickstart/MVS, when used in conjunction with DB2, performs the majority of the
processing logic necessary to achieve commit/restart capability within a batch
application program. When initiated, via a checkpoint routine, it will record the status
of an executing application program, store the contents of specified program
variables, note the position into sequential files, and issue a DB2 COMMIT. If the
application program ends abnormally, the status of the program at the last
checkpoint will be retained. Upon the restart of the application program, Quickstart
will recall the last checkpoint information, restore the state of the saved program
variables, and reposition all sequential files, enabling the program to resume
processing.

2.4.4.2 Program Enhancements

46 CMS DB2 Standards and Guidelines 12/8/2005

Quickstart/MVS provides two different methods to use the product with application
programs, Transparent Mode and API Mode. Since API Mode provides the highest
amount of flexibility, this mode should be used when developing applications at CMS.

The following program enhancements must be made in order to use Quickstart/MVS
in API Mode and to ensure the application is in fact restartable. See the Examples
section of this document for additional information.

1. Identify files which must be repositioned in the event of a restart condition.

2. Convert repositionable files to use Quickstart/MVS COBOL FD Interception.

3. Copy Quickstart/MVS copybooks, QSWSLIT, QSWSBEG, and QSWSEND into
the application program.

4. Identify application program Working Storage areas which would need to be
restored in the event of a restart condition.

5. Code performable paragraph in the Procedure Division of the program to CALL
the Quickstart/MVS checkpoint module, CKPTRTN .

6. Code initialization logic to perform the checkpoint paragraph (step 5) to
initialize Quickstart/MVS and to check for a restart condition.

7. Code "wrap-up" logic to perform the checkpoint paragraph (step 5) to
perform a "normal" termination of Quickstart/MVS.

8. Design application logic to incorporate Logical Unit of Work (LUW) techniques.
Incorporate logic that will periodically perform the checkpoint paragraph (step
5) to issue a checkpoint and record program status information.

9. When appropriate, code cursor definitions such that the cursor position will
not be lost during checkpoint processing and can be repositioned during
program restart processing.

10. Add logic to DISPLAY checkpoint and restart information. This information
would be extremely useful to determine the progress and successful
execution of your application. Additionally, this information may be presented
during reviews of the application to document abend/restart capability.

2.4.4.3 Program Preparation

The program preparation process for DB2 application programs does not differ when
the program is used in conjunction with Quickstart/MVS. There is a minor difference
to the way the batch application plan is bound (plan must include the collection id
(QUICKSTART.*) for Quickstart/MVS packages), however this will be handled by the
central DBA.

2.4.4.4 JCL Enhancements

The following JCL modifications must be made to job streams which execute
application programs using Quickstart/MVS.

1. Add the Quickstart/MVS executable load library to the appropriate steplib or
joblib. This library name is CMS1.@QSTART.P1.LOADLIB. (Note, this library
name may differ depending on the corresponding DB2 subsystem. Check with
the central DBA to determine the correct name for your executing
environment.)

47 CMS DB2 Standards and Guidelines 12/8/2005

2. Add a PARMLIB DD card to enable Quickstart to dynamically allocate a
Checkpoint Dataset. Quickstart uses this file to store Working Storage and file
positioning information. The dataset name specified on the DD card is used by
Quickstart to determine how to name the checkpoint dataset it creates
dynamically. The name can contain any high-level qualifiers with the last
qualifier equal to the jobname. The DD card should be coded as follows:

//PARMLIB DD
DSN=hlq1.hlq2.jobname,SPACE=(trK,0),UNIT=unit

3. Adjust the disposition of any output sequential datasets that would need to be
repositioned in the event of a restart scenario. Disposition of these files
should be set to MOD,CATLG,CATLG. Upon the initial execution of your
program, Quickstart will initialize these datasets as if the disposition were
NEW. Subsequent restarts of the job will force Quickstart to append the
datasets, using the MOD disposition.

Note: For restart purposes, report files can also be written to output datasets
using this method instead of writing them to SYSOUT.

2.4.4.5 Examples

Program Enhancements

The following are excerpts from a COBOL/DB2 application program which uses
Quickstart/MVS in API Mode. Note that all sample COBOL code written in bold print
is required.

1. Identify files which must be repositioned in the event of a restart condition.

2. Convert repositionable files to use Quickstart/MVS COBOL FD Interception.
Note: This step is only required for non-DBMS data files. Repositioning of DB2
data will be handled automatically.

COPY QSOPENI REPLACING MYFD BY CARDIN.

COPY QSOPNADV REPLACING MYFD BY REPOUT.

...

COPY QSCLOSEI REPLACING MYFD BY CARDIN.

COPY QSCLSADV REPLACING MYFD BY REPOUT.

3. Copy Quickstart/MVS copybooks, QSWSLIT, QSWSBEG, and QSWSEND into the
application program.

• QSWSLIT contains a list of program literals used to invoke the Quickstart

48 CMS DB2 Standards and Guidelines 12/8/2005

APSIs.

• QSWSBEG marks the beginning of the Working Storage Checkpoint Save
Area -- the area that will be saved by Quickstart at each invocation of the
CKPTRTN module. These areas will be restored by Quickstart at program
restart.

• QSWSEND marks the end of the Working Storage Checkpoint Save Area.

4. Identify application program Working Storage areas which would need to be
restored in the event of a restart condition. Position each of these areas in
Working Storage between copybooks, QSWSBEG and QSWSEND. All data
elements coded between these copybooks will be saved in the Checkpoint
Dataset.

01 QS-PROGRAM-LITERALS.

 02 LUW-COUNTER PIC S9(4) COMP VALUE +0.

 COPY QSWSLIT.

 COPY QSWSBEG.

 02 REC-PROCESSED-COUNTER PIC S9(4) COMP VALUE +0.

 02 RECS-LAST-PROCESSED PIC S9(4) COMP.

 02 WS-LAST-ORG-EIN PIC X(9).

 02 WS-LAST-ORG-NAME PIC X(35).

COPY QSWSEND.

5. Code performable paragraph in the Procedure Division of the program to CALL
the Quickstart/MVS checkpoint module, CKPTRTN.

 CKPT-RTN.
*
** THE FOLLOWING CALL TO CKPTRTN HANDLES ALL CHECKPOINTING
** NEEDS, INCLUDING SAVING SEQUENTIAL FILES POSITIONS, SAVING
** WORKING STORAGE, AND ISSUING A DB2 COMMIT.
*
DISPLAY 'BEGIN CKPT-RTN. RECORD COUNT = ' REC-PROCESSED-COUNTER.
CALL 'CKPTRTN' USING CKPT-SAVE-AREA, CKPT-AREA-END.
DISPLAY 'END CKPT-RTN. RECORD COUNT = ' REC-PROCESSED-COUNTER.

CKPT-RTN-EXIT.

EXIT.

6. Code initialization logic to perform the checkpoint paragraph (step 5) to initialize
Quickstart/MVS and to check for a restart condition.

49 CMS DB2 Standards and Guidelines 12/8/2005

MOVE 'pgmname' TO CKPT-PGM-NAME.
PERFORM CKPT-RTN THRU CKPT-RTN-EXIT.

7. Code "wrap-up" logic to perform the checkpoint paragraph (step 5) to perform a
"normal" termination of Quickstart/MVS.

MOVE 'E' TO CKPT-REQUEST-TYPE.
PERFORM CKPT-RTN THRU CKPT-RTN-EXIT.

8. Design application logic to incorporate Logical Unit of Work (LUW) techniques.
Include logic that will periodically perform the checkpoint paragraph (step 5) to
issue a checkpoint and record program status information.
Note PARM-IN-COMMIT-FREQ is an input parameter read in by the program
indicating how often a commit (Quickstart checkpoint) should be performed. This
method is recommended to allow the commit frequency to be modified at
application run time.

ADD 1 TO REC-PROCESSED-COUNTER, LUW-COUNTER
IF LUW-COUNTER < PARM-IN-COMMIT-FREQ

CONTINUE

ELSE

MOVE REC-PROCESSED-COUNTER

TO RECS-LAST-PROCESSED

MOVE 'F' TO CKPT-REQUEST-TYPE

MOVE ZEROS TO LUW-COUNTER

PERFORM CKPT-RTN THRU CKPT-RTN-EXIT

END-IF

9. When appropriate, code cursor definitions such that the cursor position will not be
lost during checkpoint processing and can be repositioned during program restart
processing.
When coding a cursor that must be repositioned, care must be given to the
sequence of the data being retrieved. Code the ORDER BY clause in such a way
that will make it easy to determine the last row processed. The WHERE clause
can then include additional search criteria to retrieve only those rows that have
not yet been processed. The following example illustrates this technique. Note,
the WITH HOLD option must be specified in order to retain the current cursor
position each time a checkpoint (DB2 COMMIT) is processed.

50 CMS DB2 Standards and Guidelines 12/8/2005

DECLARE ORG_LIST CURSOR WITH HOLD FOR
SELECT ORG_NAME, ORG_EIN, ORG_PHN_NUM

FROM AAA_ORGANIZATION

WHERE ORG_NAME LIKE :WS-ORG-NAME

AND ORG_NAME >= :WS-LAST-ORG-NAME

AND ORG_EIN > :WS-LAST-ORG-EIN

ORDER BY ORG-NAME,ORG-EIN

10. Add logic to DISPLAY checkpoint and restart information. This information would
be extremely useful to determine the progress and successful execution of your
application. Additionally, this information may be presented during reviews of
the application to document abend/restart capability.

IF PROGRAM-IS-RESTARTING
DISPLAY 'RESTART IN PROGRESS AT RECORD ',

RECS-LAST-PROCESSED

ELSE

DISPLAY 'BEGIN PROCESSING ',

'RECORD COUNTER=' REC-PROCESSED-COUNTER

END-IF

Naming Standards

3.1 Conventions for Objects and Datasets
This section discusses the standard naming conventions for DB2 objects and
datasets. These conventions were designed to meet the following objectives:

· Guarantee uniqueness of DB2 object names within a DB2 subsystem

· Provide a uniform naming structure for DB2 objects of similar types

· Simplify physical database design decisions regarding naming strategies

51 CMS DB2 Standards and Guidelines 12/8/2005

· Provide ability to visually group DB2 Objects by the application and/or
subject area for which the objects were designed to support

The following naming standards apply to any DB2 object (database, tablespace,
table, view, package, etc.) used to hold or maintain user data, as well as external
user objects, (partitioned datasets, production job names, etc.) that will be used in
conjunction with DB2 as part of standard application development and system
operation procedures.

3.1.1 Standard Naming Format for DB2 Objects
All DB2 objects will be named according to the standard formats listed in the
following table. All object names must begin with an alphabetic character and cannot
begin with DSN, SQL, or DSQ.

DB2
Objects

Object
Type

Required Attributes

CMS Standard
Format

Example

Alias

• 18 character
(maximum);

• alias name will
always match
the name of the
table to which
the alias
pertains

creator.aliasname DBA$DB2T.
NPS_PROV_INFO

column

• 18 character
(maximum);

• unique within
the
corresponding
table

• name should be
derived from
the business
name identified
during the
business/data
analysis
process;

• name must
include
acceptable class
and modifying
words as
defined by the
data

bb...bb PROV_ID

52 CMS DB2 Standards and Guidelines 12/8/2005

http://www.cms.hhs.gov/it/database/db2standards/Naming/nm_01_21.asp
http://www.cms.hhs.gov/it/database/db2standards/Naming/nm_01_21.asp

administration
group.

Collection

• 6 character
name

• The first three-
characters
(AAA) is the
Application
Identifier

• The last three-
positions is
always ‘001’

• Plans are
always created
by the Central
DBA

AAAttt NPS001

Database

• 8 characters
name
(maximum);

• First three
characters
represent
Subject Area
under which the
data contained
within the
database is
categorized

• the next three
characters
indicate the
application
responsible for
the data; this
abbreviation
must be
approved by
Central DBA and
APCSS

• the last two
positions are
sequential
numbers used
to uniquely
identify the
database within
subject and
application

sssAAAnn PRVNPS01

53 CMS DB2 Standards and Guidelines 12/8/2005

• All Databases
are defined by
the Central DBA

DBRM

• 8 character
name
(maximum),
(three-character
Application
Identifier & five-
char
description);

• DBRM name
must be
identical to the
source module
name of the
corresponding
application
program.

AAAbbbbb NPSPROG1

DCLGEN

• 6-7 character
library member
name

• for tables, the
DCLGEN
member name
will correspond
to the name of
the
corresponding
tablespace.

• for approved
views, the
DCLGEN
member name
should begin
with a one-
position
alphabetic
character ('V'
for 'view'), a
three-character
Application
Identifier, and a
three-position
sequential
number
uniquely
identifying the
view member

AAAttt - table

VAAAttt - views

NPS001

VNPS001

54 CMS DB2 Standards and Guidelines 12/8/2005

name

Foreign
Key

• 8 character
name;

• three-character
Application
Identifier, a
three-position
sequential
number
indicating the
corresponding
tablespace
number, a one-
position fixed
character ("F"),
and a one-
position
sequential
number
indicating the
specific foreign
key for the
corresponding
table/tablespace
;

• must be unique
within the
corresponding
database
definition.

AAAtttFn NPS001F1

Index

• 8 character
name;

• three-character
Application
Identifier, a
three-position
sequential
number
indicating the
corresponding
tablespace
number, and a
two-position
sequential
number
indicating the
specific index
for the
corresponding

AAAtttnn NPS00101

55 CMS DB2 Standards and Guidelines 12/8/2005

table/tablespace
;

• must be unique
within database

Package

• 8 character
name
(maximum),
(three-character
Application
Identifier & five-
char
description);
package name
must be
identical to the
source module
name of the
corresponding
application
program.

AAAbbbbb NPSPROG1

Plan

• CMS utilizes two
plans for each
application one
for online
programs and
one for Batch
programs

• 7 character
name

• The first three-
characters
(AAA) is the
Application
Identifier

• The fourth is
either a ‘C’ for
CICS or a ‘B’ for
non-CICS

• The last three
are always ‘001’

• Plans are
always created
by the Central
DBA

AAAcnnn MSIB001

Program
• 8 character

name
(maximum),

AAAbbbbb NPSPROG1

56 CMS DB2 Standards and Guidelines 12/8/2005

(three-character
Application
Identifier & five-
char desc);

• use existing
standards (refer
to CMS Data
Center Users'
Guide

schema

• 6 character
name, the name
is the same as
the collection
used for the
application

See collection See collection

Storage
Group

• 8 character
name.

• First character
must be
alphabetic, the
following
characters can
be either
alphabetic or
numeric;

• Name must be
unique within
subsystem

• Storage groups
are defined by
the Central DBA
staff

bbbbbbbb STOGRPT1

Stored
Procedure

• 8 character
name

• Three-character
application
identifier, a two
position fixed
character “SP”,
a three position
alphanumeric
program id.

AAASPbbb MBDSP001

Table

• 18 character
name
(maximum);

• three-character

AAA_bb..bb NPS_PROV_INFO

57 CMS DB2 Standards and Guidelines 12/8/2005

Application
Identifier
followed by an
underscore (_)
and up to 14
alphanumeric
characters
describing the
contents of the
table.

• Table names
must be created
in the same
manner as
column names
and must follow
the same rules.
Refer to the
data
administration
standards for
more
information.

• Table
description
should include
prime word as
described in the
CMS
Information
Systems
Development
Guide.

Note: table name is
qualified by an 8
character object
creator Id.

Table
Check
Constraint

• 18 character
name;

• three-character
Application
Identifier, a
three-position
sequential
number
indicating the
corresponding
tablespace
number, an

AAAttt_bbbbbbbbbbb NPS001_CLASS_CODE

58 CMS DB2 Standards and Guidelines 12/8/2005

underscore (_),
and up to 11
alphanumeric
characters
describing the
constraint.

• must be unique
within
corresponding
table definition.

Table
Creator Id

• 8 character
name

• First four
characters are
“DBA$”

• Last three
characters is
the DB2
subsystem Id

DBA$AAA DBA$MED

Tablespace

• 6 character
name;

• three-character
Application
Identifier and a
three-position
sequential
number
indicating the
specific
tablespace
number;

• must be unique
within database

AAAttt NPS001

Trigger

• 7 character
name

• 1-3 (AAA) is the
Application Id

• 4 (t) describes
the trigger type
(B-efore or A-
fter)

• 5-7 (nnn)
Tablespace
number

• 8 (x) Sequence
number - 0-9 A-

AAAtnnnx DSYB0210 for a
BEFORE trigger on
tablespace DSY021

59 CMS DB2 Standards and Guidelines 12/8/2005

Z

UDF and
Distinct
Types

• UDF’s and
distinct types
are not
currently
supported at
CMS, contact
the Central DBA
staff for
guidance

View

• 18 character
name
(maximum);
three-character
Application
Identifier
followed by an
underscore (_)
and up to 14
alphanumeric
characters
describing the
contents of the
view

• Use of views
must be
approved by the
Central DBA
group

Note: view name is
qualified by an 8
character object
creator Id which, on
the test DB2
subsystem, is
determined by the
secondary
authorization Id of the
Project DBA creating
the view. In
production, the object
creator Id for all views
is DBA$DB2P.

AAA_bb..bb NPS_ACTV_PROV

60 CMS DB2 Standards and Guidelines 12/8/2005

3.1.2 Standard Application Identifiers
Standard names for most DB2 objects and datasets include a three-character code
that indicates to which application the object belongs. Exceptions to this naming
convention are subsystem IDs, storage groups, and columns.

The Application Identifier identifies a CMS-specific system or application. The APCSS,
Central DBA Group and application development teams jointly determine and assign
the three-character code. Contact APCSS for a list of assigned application identifiers.

3.2 DB2 Subsystem Names
The Subsystem ID is a unique four-character name used to identify a DB2 address
space to the MVS operating system. Within each DB2 subsystem, there is a directory
and catalog containing all of the DB2 objects (i.e., tablespaces, tables, indexes,
application plans, etc.) defined within.

The distinct DB2 subsystem environments, their standard DB2 names, usage and
availability are shown in the table below. The naming standard for DB2 subsystem
environments is a four-digit code where the first three digits are 'DB2' and the last
digit identifies the subsystem as follows.

Subsystem Environment Object Names
Standard
Name Type Usage Available ALIAS/Creator

Name

DB1T

DB2T

DB3T

Test &
Development

Primarily used by DBAs
and applications
programmers to design
and build relational
databases and the
applications that access
those databases.

daily

DBA$DB1T

DBA$DB2T

DBA$DB3T

DB2I
Integration &
Stress
Testing

For final pre-validation
testing and performance
measurement.

daily DBA$DB2I

DB1V

DB2V

DB3V

Validation

DBA, application
programmers, end-users
access DB2 relational
databases to verify all
components of an
application prior to
production
implementation.

daily

DBA$DB1V

DBA$DB2V

DBA$DB3V

DB1P
Production

End-users access
operational DB2 relational

daily
DBA$DB1P

61 CMS DB2 Standards and Guidelines 12/8/2005

DB2P

DB3P

databases. DBA$DB2P

DBA$DB3P

DB2W
Data
Warehouse

End-users access decision
support/warehoused DB2
relational databases

daily DBA$DB2W

3.3 Production Library Names
The following is a list of standard library names to be used by applications
developers and local and central DBAs.

Library Name Description

PROD.DBRM.LIB This library contains the database request modules
produced by the DB2 precompiler, which are input to the
BIND process.

PROD.COPY.LIB This library contains the output from DCLGENs. The
member name should be the name of the table or view.
Each member contains the DB2 object columns and its
COBOL copybook representation. This is a PANVALET
structure.

PROD.JCL.LIB This library stores the batch JCL used to submit standard
Production DB2 utility jobs.

PROD.PROC.LIB This library holds the cataloged JCL procedures (i.e.,
application) jobstreams for all DB2 applications.

3.4 Test Library Names
The following is a list of standard library names used by Endevor for development.

Library Name Description

ASCM.#ENDVOUT.xxx.yyyyyy.DEVDBRM
Where xxx is the application ID and
yyyyyy is the Endevor subsystem

This library contains the database request
modules produced by the DB2
precompiler, which become input to the
BIND process.

ASCM.#ENDVOUT.xxx.COPYLIB.DEVCOPY This library contains the output from
DCLGENs. The member name should be
the name of the table or view. Each
member contains the DB2 object columns
and its COBOL copybook representation.
This is a PANVALET structure.

62 CMS DB2 Standards and Guidelines 12/8/2005

3.5 Image Copy Dataset Names
The naming standard is the same for both system and user image copy datasets as
follows:

yyyy.LLL.dddddddd.tttttttt.Annn.GxxxxVxx, where:

yyyy DB2 Subsystem ID (e.g., DB2T, DB2P, etc)

LLL designates location of imagecopy dataset (LOC = local, DRV = disaster
recovery, or OFS = offsite archive vault 2)

The storage medium (Tape, DASD) will be directed by media
management based on a DSN pattern.

dddddddd eight-character database name

tttttttt eight-character tablespace name

Annn partition number (A001 for non-partitioned tablespaces)

I type of copy (F = full, I = Incremental) if both types are used. No type
implies full copy.

GxxxxVxx generation dataset group number

Local Copy Example: DB2T.LOC. PRVNPS01.NPS001.A001.G0708V00

• At least two production copies will be made, one local and one to an offsite
vault.

• Test only requires one copy locally. When the test file is not easily rebuilt
from production, an offsite copy of test data should be sent to the archive
vault. Test copies should not be in the disaster recovery vault, unless
permission is given by the central DBA and media management group.

• For full image copies, at least 3 generations should be kept.

• For incremental copies, all generations after the previous full copy should be
kept.

• The same number of generations is not required for onsite and offsite copies.
Disaster recovery should be limited to 3 full copy generations even when
additional copies are kept locally.

• Production files, even if read only, require an offsite copy at least once a year,
unless provision for rebuilding the file from source data is provided to APCSS.

• When hotsite recovery is required, image copies must be made at least every
six months. This insures that at least two backups exist at the hotsite in the
event that a tape error prevents the first tape from being read.

• Image copy files may only be kept for three years.

• Catalog control, EXPDT=99000, will be used to control expiration dates.

63 CMS DB2 Standards and Guidelines 12/8/2005

http://www.cms.hhs.gov/it/database/db2standards/Naming/nm_02.asp

3.6 Utility Job Names
A utility ID is a name used to uniquely identify a utility in the DB2 subsystem, only
one instance of a unique utility ID may be active within DB2 at any given time. The
standard for naming utilities will be to use the jobname. For multi-step and/or multi-
utility jobs, the first seven characters of the jobname and 1, incremented by 1, for
each successive step will be used.

Utility ID Format: Example: Jobname MSI#01IC (image copy with three steps
running one utility per step)

Utilids: MSI#01I1, MSI#01I2, MSI#01I3

DB2 Utility Type Codes

Code Description

IC Image Copy

RG Reorg

RC Recover

RI Recover Index

RS Runstats

QU Quiesce

MD Modify

RB Rebuild Index

3.7 DB2/ORACLE Naming Issues
This section is intended for applications that implement common data in both DB2
and ORACLE. Objects that are replicated in both databases must be named the
same. Please refer to the EDG/DSS/DA naming standards.

Security

4.1 DB2 Security Administration

STANDARD

DB2 Security at CMS is administered using RACF groups. Individual userids are
associated with one or more RACF Groups, each having a different set of authorities
and privileges in DB2. All central DBAs, local DBAs, application developers,

64 CMS DB2 Standards and Guidelines 12/8/2005

and application users must be assigned to and use RACF Groups within DB2.
DB2 privileges and authorities are not granted to individual userids.

The following sections describe the DB2 security procedures for each of the DB2
processing environments.

4.1.1 Development
In the DB2 Development environment, security will be administered at four levels
(see DBA Roles and Responsibilities for more details). They are:

• Central DBA

• Local DBA

• Application Developer

• Application User

Upon the initiation of a DB2 application development project, the central DBA will
perform several steps to prepare the development environment for the Application
Development team. These activities include:

• create RACF groups specifically for the new application;

• create a DB2 database which will be used to group all DB2 objects created for
the application;

• grant preliminary privileges to the project team;

• create online and/or batch application plans;

The local DBA is primarily responsible for maintaining database objects for the
application. Once the initial database environment is turned over to the local DBA by
the central DBA, object creation and maintenance can begin. In addition to creating
objects, the local DBA must perform tasks to ensure that the development and user
groups have appropriate access to this new environment. These tasks include but are
not limited to:

• connect individual userids with the appropriate RACF Groups;

Each of the tasks noted above are described in the sections that follow.

4.1.1.1 RACF Groups
The central DBA will create RACF Groups which will be used to administer security on
all objects created for the application. Central DBA will associate these RACF groups
(listed below) along with the common RACF Group for the development environment,
to the userid of the local DBA assigned to the application.

Development RACF Groups

DBA$DB2T Common development RACF Group. This group is used to create DB2
ALIAS' for all tables and views created in the development environment

65 CMS DB2 Standards and Guidelines 12/8/2005

DBA$xxx RACF Group to be used by the local DBA to manage DB2 objects.

DEV$xxx RACF Group to be used by the Application Developer to manipulate DB2
data, bind application packages, execute specific database utilities.

USR$xxx RACF Group to be used by the Application User in the development
environment. This RACF Group should facilitate user testing activities.

Where xxx is the assigned application identifier.

The central DBA will also grant the local DBA connect authority within RACF so that
the local DBA may add or remove userids to/from the DEV$xxx and USR$xxx RACF
Groups. The central DBA will add or remove individual RACF ids to/from the DBA$xxx
and DBA$DB2T RACF Group as requested by the designated local DBA and the
Application's management.

4.1.1.2 Application Database
The central DBA will create at least one database that will be used to manage the
DB2 objects (tables, tablespaces, indexes, etc.) for the application. The local DBA
will be responsible for the creation and maintenance of all DB2 objects within this
database. The local DBA must use authorities associated with the DBA$xxx RACF
group to accomplish this task.

To create or maintain an application database object using DDL (data definition
language), the local DBA must first connect to the local DBA RACF group (DBA$xxx)
using the SET CURRENT SQLID command. This will ensure that the local DBA has the
appropriate authority to create or manage the object and that all objects created are
owned by the local DBA RACF group. For each database table or view created, the
local DBA must also create a DB2 alias using the common development RACF group
(DBA$DB2T). This is necessary to facilitate the required use of unqualified table/view
names from application programs, permit a more generic and flexible BIND process,
and allow for a seamless migration of database objects from the development
environment to subsequent DB2 subsystems.

4.1.1.3 Preliminary Privileges (central DBA)
As part of the initial steps in setting up a DB2 application database in the
Development environment, the central DBA will grant the following privileges.

Local DBA Privileges

After creating the application database, the central DBA will grant DBADM authority
on the new database to the local DBA RACF group (DBA$xxx). With this authority,
the local DBA will have the ability to create and maintain all database objects needed
for the application within this new database. The local DBA will not be given
authority to create a database.

66 CMS DB2 Standards and Guidelines 12/8/2005

In addition to granting DBADM authority, the central DBA will also grant to the local
DBA RACF Group the following database level privileges.

Database Privileges granted

DISPLAYDB issue the DB2 -DISPLAY DATABASE command

IMAGCOPY execute the COPY utility to create a backup of a tablespace

LOAD execute the LOAD utility

STATS execute the RUNSTATS utility to update catalog statistics

STARTDB issue the DB2 -START DATABASE command

STOPDB issue the DB2 -STOP DATABASE command

The above privileges may be augmented or removed by the central DBA as
experience dictates.

Application Developer Privileges

Central DBA will grant DB2 system-level privileges, BINDADD and CREATE IN
COLLECTION 'xxxnnn', to the Application's Developer RACF Group (DEV$xxx). All
packages created by the application development team must be created using this
assigned collection id.

A single database (DEVPLN01) and tablespace (PLN001) exists for the purpose of
storing plan tables for the application development environment. As an additional
step, the central DBA will grant CREATE table privilege in this database to the
Application Development RACF group. This will permit the developer to create a plan
table for their application.

4.1.1.4 Application Plans
The central DBA will create application plans in DB2 which can be used to associate
application programs (DB2 packages). Plans will be created for the online and batch
environments and will be named xxxC00n and xxxB00n respectively (where xxx is
the assigned application identifier and n is a number). Plans will contain a generic
package list as part of their definitions which will include all packages created under
the collection id(xxx00n) assigned for the application.

The following authorities are set up for each plan:

Online EXECUTE ON PLAN xxxC00n TO USR$xxx

Batch EXECUTE ON PLAN xxxB00n TO DEV$xxx

67 CMS DB2 Standards and Guidelines 12/8/2005

http://www.cms.hhs.gov/it/database/db2standards/security/sc_03_1.htm
http://www.cms.hhs.gov/it/database/db2standards/naming/nm_01_1.asp

4.1.1.5 Application Packages
Application Developers are responsible for binding all DB2 application packages in
the development environment. In order to do this, certain DB2 privileges are
required. The DB2 system-level privileges of BINDADD and CREATE IN COLLECTION
'xxx001', (where xxx is the assigned application identifier), will be granted to the
Application's Developer RACF Group (DEV$xxx). All packages created by the
application development team must be created using this assigned collection id.

Binding an application package in the DB2 development environment is accomplished
automatically whenever a DB2 application program successfully compiles using CA-
Endevor. Endevor processors are in place to associate the application currently being
prepared with the appropriate DB2 collection id (xxx001).

When a BIND is executed using Endevor, the developer's RACF group (DEV$xxx) will
be used to verify authorizations within DB2.

4.1.1.6 Plan Table (Application Developers)
Tablespaces (DEVPLN01.PLN001) and (VALPLN01.PLN001) exist for the purpose of
storing Explain Tables in all of the Development (DB*T) and Validation (DB*V)
Environments.

The Central DBA is responsible for creating the four(4) Tables required in each of the
Environments referenced by the Endevor path(s) defined for the Application. This
should be done when RACF authority is requested for a NEW application, or as soon
thereafter as practical.

The JCL to create the required Tables, as well as instructions for substitutions and
execution may be found in TEST.JCL.LIB (EXPLTABL).

The Template used to support the Table creation process will be maintained at the
current DB2 release level by the Central DBA Group. All tables created at prior
release levels are upward compatible and no intervention is required for past
releases at BIND time.

Note: Each application development group must have Tables PLAN_TABLE,
PLAN_HST, DSN_STATEMNT_TABLE, and DSN_STATEMNT_HST defined in the
environment referenced by the current path for the CA-Endevor stage in order to
successfully BIND DB2 Packages using CA-Endevor program preparation procedures.

DSN_FUNCTION_TABLE and DSN_FUNCTION_HST may be created individually for
applications containing user defined functions if desired, but mechanized
maintenance of these tables is not currently supported by Endevor or the Central
DBA Staff.

4.1.1.7 Catalog Access

68 CMS DB2 Standards and Guidelines 12/8/2005

All DB2 users in the test DB2 subsystems will have SELECT authority on most DB2
catalog tables.

4.1.1.8 Central DBA Policies
The central DBA Group maintains overall control of all DB2 subsystems. While there
is no predetermined limit to the number of databases a local DBA may control within
an application area, central DBA will require justification/explanation for the need.

It is the local DBA's responsibility to create and monitor the number of objects
housed within a given database. In the event database definitions (DBDs) or any
other resource begins to impact performance of the EDM pool and/or other
subsystem activity, central DBA will initiate necessary corrective actions, to include a
review of subsystem activity, any necessary resource maintenance, and investigation
of all anomalies such as unusually large DBDs. These activities can and should be
initiated by any local DBA that feels that their development efforts are being
impeded.

4.1.2 Validation
In the DB2 Validation environment, security will be administered at three levels (see
DBA Roles and Responsibilities for more details). They are:

• Central DBA

• Local DBA

• Application User

Migration of DB2 database objects from the DB2 development environment to the
validation environment is the responsibility of the central DBA. The central DBA will
perform several steps to prepare the application database in the DB2 validation
subsystem. These activities include:

• migrate all DB2 database objects, (database, tablespaces, tables, indexes,
etc) from the development environment;

• grant privileges to the local DBA and when necessary;

• create online and/or batch application plans.

In the validation environment, the local DBA is primarily responsible for operational
issues regarding the application database objects. The local DBA must execute all
necessary database utilities (load, copy, reorg, etc) responding to problems when
required.

For most host-based applications (COBOL) developed at CMS, Application Users will
not need to have specific privileges permitting them to access DB2 tables directly.
For the most part, this group will be granted permission to execute DB2 applications
only. For Application Users who must access DB2 using Dynamic SQL, (QMF, SAS,
Visual Basic), these privileges may be added as needed.

Each of the tasks noted above are described in the sections that follow.

69 CMS DB2 Standards and Guidelines 12/8/2005

4.1.2.1 RACF Groups

In the Validation environment, the central DBA will use the Common Validation RACF
Group to create and maintain all application database objects. The RACF groups
listed below for the local DBA and the Application User will have limited authority in
the Validation environment. See RACF Groups in the Security (Development) section
of this document for details on how these RACF groups are assigned.

Validation RACF Groups

DBA$DB2V Common Validation RACF Group. This group is used to create all DB2
objects in the validation environment.

DBA$xxx RACF Group to be used by the Project DBA to execute utilities and
monitor DB2 objects.

DEV$xxx RACF Group to be used by the Application Developer to manipulate DB2
data, execute specific database utilities, and test application programs
as required.

USR$xxx RACF Group to be used by the Application User in the validation
environment. This RACF Group should facilitate user testing activities.

where xxx is the assigned application identifier

4.1.2.2 Application Database
The central DBA will create all database objects in the DB2 Validation environment
for the migrating application. All objects created in this environment will have an
associated creator id of DBA$DBxV (Where x=subsystem number). The local DBA will

70 CMS DB2 Standards and Guidelines 12/8/2005

http://www.cms.hhs.gov/it/database/db2standards/security/sc_03_1.htm

not have the authority to create, alter, or drop any database objects in the Validation
environment.

4.1.2.3 Preliminary Privileges (Central DBA)
As part of the initial steps in setting up a DB2 application database in the Validation
environment, the central DBA will grant the following privileges.

Local DBA Privileges

After creating the application database objects in the Validation environment, the
central DBA will grant the local DBA RACF Group the following database level
privileges.

DISPLAYDB issue the DB2 -DISPLAY DATABASE command

IMAGCOPY execute the COPY utility to create a backup of a tablespace

LOAD execute the LOAD utility to bulk load data

STATS execute the RUNSTATS utility to update catalog statistics

STARTDB issue the DB2 -START DATABASE command

STOPDB issue the DB2 -STOP DATABASE command

RECOVER execute the RECOVER utility to restore application data

REORG execute the REORG utility to optimize storage utilization

In addition to the privileges noted above, the central DBA will grant the local DBA
RACF group INSERT, UPDATE, DELETE, and SELECT authority on each application
table

Note: The above privileges may be modified as needed by the central DBA.

Additional Privileges (local DBA)
The RACF Group for the local DBA will have limited authority on the application
database objects created by the central DBA in the Validation DB2 subsystem. With
this authority, the local DBA will have the ability to perform operational activities on
the database as needed. The local DBA does not have authority to create, alter, or
drop database objects in the Validation environment. The local DBA will have RACF
CONNECT authority to connect userids to the Application RACF groups.

4.1.2.4 Application Plans
The central DBA will create the application plans in DB2 which can be used to
associate application programs (DB2 packages). Plans will be created for the online
and batch environments and will be named xxxC00n and xxxB00n respectively
(where xxx is the assigned application identifier and n is a specific number). Plans

71 CMS DB2 Standards and Guidelines 12/8/2005

will contain a generic package list as part of their definitions which will include all
packages created under the collection id (xxx00n) assigned for the application.

The following authorities will be assigned via RACF to each plan.

Online EXECUTE ON PLAN xxxC00n TO USR$xxx

Batch EXECUTE ON PLAN xxxB00n TO DEV$xxx

4.1.2.5 Application Packages
In the Validation environment, Application Developers are responsible for initiating
CA-Endevor processes to bind all DB2 application packages as programs are
migrated from the development environment.

DB2 application package binds are executed automatically whenever a DB2
application program is migrated to the validation environment using CA-Endevor.
Endevor processors are in place to associate the application currently being prepared
with the appropriate DB2 collection id (xxx00n).

4.1.2.6 General Authorizations
All Project DBAs in the Validation DB2 subsystems will have SELECT authority on
most DB2 catalog tables.

4.1.3 Production
In the DB2 Production environment, security is administered at three levels (see DBA
Roles and Responsibilities for more details). They are:

• Central DBA

• Local DBA

• Application User

Migration of DB2 database objects from the DB2 validation environment to the
production environment is the responsibility of the central DBA. The central DBA will
perform several steps to prepare the application database in the DB2 production
subsystem. These activities include:

• migrate all DB2 database objects, (database, tablespaces, tables, indexes,
etc) from the validation environment;

• create online and/or batch application plans;

In the production environment, the local DBA is responsible for monitoring
operational issues regarding the application database objects. In this environment,
the local DBA will be the first point of contact in the event that a database related
problem has been identified with the application. Because of this responsibility, the
local DBA will have limited authority in the production DB2 subsystem.
For most host-based applications (COBOL) developed at CMS, Application Users will
not need to have specific privileges permitting them to access DB2 tables directly.

72 CMS DB2 Standards and Guidelines 12/8/2005

For the most part, this group will be granted permission to execute DB2 applications
only. For Application Users who must access DB2 using Dynamic SQL, (QMF, SAS,
Visual Basic), additional privileges must be granted. The central DBA will grant these
additional authorizations as required.

Each of the tasks noted above are described in the sections that follow.

4.1.3.1 RACF Groups
In the Production environment, the central DBA will use the Common Production
RACF Group to create and maintain all application database objects. The RACF
groups listed below for the local DBA and the Application User will have limited
authority in the Production environment.

Production RACF Groups

xxxPRODU APCSS production batch user ID.

DBA$DBss Common Production RACF Group Owner. This group is used to create all
DB2 objects in the production environment. (ss=subsystem ID)

DBA$xxx RACF Group to be used by the local DBA to execute monitor DB2
objects.

USR$xxxP RACF Group to be used by the Application User in the production
environment. This RACF Group should facilitate user testing activities.

PxxxUSRG RACF Group for production application role-based access groups. It is
controlled by EUA and may be used in place of USR$xxx .

where xxx is the assigned application identifier

Central DBA will add or remove individual TSO IDs to and from the production
Application User RACF Group(s) as requested by the identified data custodian for the
application data. See RACF Groups in the Security (Development) section of this
document for details on how Project DBA RACF groups are assigned.

4.1.3.2 Application Database
The central DBA will create all database objects in the DB2 Production environment
for the migrating application. All objects created in this environment will have an
associated creator id of DBA$DBss where ss = the DB2 subsystem ID - i.e. 2P, 2W
etc. The local DBA will not have the authority to create, alter, or drop any database
objects in the production environment.

Preliminary Privileges (central DBA)
As part of the initial steps in setting up a DB2 application database in the Production
environment, the central DBA will grant the following privileges.

Local DBA Privileges

73 CMS DB2 Standards and Guidelines 12/8/2005

In the production environment, the local DBA is responsible for monitoring
operational issues regarding the application database objects. In this environment,
the local DBA will be the first point of contact in the event that a database related
problem has been identified with the application. Because of this responsibility, the
local DBA will have limited authority in the production DB2 subsystem.

After creating the application database objects in the Production environment, the
central DBA will assign the local DBA RACF Group the following database level
privileges.

DISPLAYDB issue the DB2 -DISPLAY DATABASE command

CA-7 Privileges

Since all batch production jobs will run under the control of CA-7, the following
database privileges are assigned to the APCSS production control User ID
(xxxPRODU).

DISPLAYDB issue the DB2 -DISPLAY DATABASE command

IMAGCOPY execute the COPY utility

LOAD execute the LOAD utility

STATS execute the RUNSTATS utility

STARTDB issue the DB2 -START DATABASE command

STOPDB issue the DB2 -STOP DATABASE command

RECOVER execute the RECOVER utility

REORG execute the REORG utility

REPAIR execute the REPAIR utility

4.1.3.3 Application Plans
The following authorities are assigned via RACF to each plan.

Online EXECUTE ON PLAN xxx C00n TO USR$xxx

Batch EXECUTE ON PLAN xxxB00n TO xxxPRODU

Where xxx is the application identifier and n is the plan number.

4.1.3.4 Application Packages

74 CMS DB2 Standards and Guidelines 12/8/2005

The production control group (APCSS) is responsible for binding all DB2 application
packages in the production environment.

Binding an application package in the DB2 production environment is accomplished
automatically as part of the production move process. APCSS will initiate program
moves using CA-Endevor. Endevor processors are in place to associate the
application currently being prepared with the appropriate DB2 collection id (xxx00n).

4.1.3.5 General Authorizations
All local DBAs in the Production DB2 subsystems will have SELECT authority on most
DB2 catalog tables.

4.2 RACF Security Administration
RACF (Resource Access Control Facility) is a mainframe security product that
protects information and resources by controlling access to it. RACF identifies each
user as they logon to the mainframe environment by means of their assigned userid.
RACF administrators at CMS assign unique userids to each CMS user requiring access
to mainframe resources. Each userid can be given a list of authorities permitting
them to access data or issue commands. RACF administrators also have the ability to
define groups (a collection of individuals) in order to administer security at a higher
'departmental' or 'functional' level.

DB2 recognizes individual userids as well as all associated RACF groups for each
connected user. Given the inherent benefits of administering security at a group level
(within and outside of DB2), all users of DB2 must be connected to a valid RACF
group. The responsibility of associating RACF ids with RACF groups belongs to
designated RACF Group Administrators. Procedures to accomplish this are listed
below. For more information on this topic, contact your Local RACF Group
Administrator.

4.2.1 Administering RACF Groups
In order to use secondary auth-ids, users must be a member of the proper RACF
group which is administered by the local DBA. The following is an example of how to
associate individual userids to a RACF Group. Note that special RACF authority is
required in order to perform these functions (see DB2 Security - RACF Groups for
more details).

To add a user to a group, logon to TSO and access ISPF H.4 (CMS local menu, RACF
Administration)

75 CMS DB2 Standards and Guidelines 12/8/2005

http://www.cms.hhs.gov/it/database/db2standards/security/sc_03_1.asp

From the main RACF menu, choose option 3 - GROUP PROFILES AND USER-TO-
GROUP CONNECTIONS.

76 CMS DB2 Standards and Guidelines 12/8/2005

On the RACF Group Profile Services menu, choose option 4 - CONNECT and enter
the group (authid) name the GROUP NAME field.

77 CMS DB2 Standards and Guidelines 12/8/2005

Use the parameters below as a guide for adding the connection to the group.
Substitute the individual’s user-id that you want to connect.

78 CMS DB2 Standards and Guidelines 12/8/2005

Enter YES for Group Access and leave the other fields blank.

4.3 Accessing DB2 Resources
This section describes how to access DB2 resources from different executing
environments. Specifically, the following explains how to associate a process with a
set of authorization Ids. In general, access to a DB2 subsystem at CMS will be
controlled through IBM RACF using RACF groups. The sections below provide
information to access DB2 resources from different executing environments. Since
DB2 security rules differ from subsystem to subsystem, these instructions may not
apply to every user in each of the CMS DB2 environments.

4.3.1 Dynamic SQL Applications (SPUFI, SAS, QMF,
DB2 Connect, etc.)

Dynamic SQL Applications include all processes (batch and online) that present SQL
statements to DB2 at execution time (see SQL Standards for more details). When
DB2 receives dynamic SQL statements, it uses the value of the CURRENT SQLID
special register to validate authorizations. Initially, CURRENT SQLID is set to the

79 CMS DB2 Standards and Guidelines 12/8/2005

http://www.cms.hhs.gov/it/database/db2standards/app_prog/ap_01.asp

primary authorization ID of the individual issuing the SQL statement. The value of
the primary authorization ID will differ depending on the execution environment.

The value of CURRENT SQLID can be changed to one of the RACF groups associated
with the primary authorization ID using the SET CURRENT SQLID command. The
following is an example of an SQL statement to change the current SQLID equal to
the RACF group USR$NPSP:

SET CURRENT SQLID = 'USR$NPSP'

4.3.2 Static SQL Applications
Static SQL Applications includes all processes (batch and online) in which the SQL
statements have been prepared prior to executing the application. In other words,
the application was precompiled and bound to DB2 so that all authorization rules
access path definitions could be determined prior to executing the applications. For
these 'static' applications, DB2 generally verifies authorizations at bind time using
the authorization ID of the owner of the DB2 application package or plan. The owner
of the application must have authority to execute all of the SQL statements included
in the application. At run time, simply DB2 verifies that the primary authorization ID
of the individual running the application has the authority to execute the package or
plan. The value of the primary authorization ID will differ depending on the execution
environment.

4.3.3 Execution Environments
Batch DB2 applications running in a batch environment (JCL jobstream) recognize

a primary authorization ID set to the RACF userid associated with the batch
job. This is determined by either the USER= parameter on the job card
when specified, or the TSO user id which submitted the job. In either case,
it is the primary authorization ID that must have EXECUTE authority on the
application plan.

CICS When executing CICS transactions, the primary ID and related secondary
IDs are determined by the RACF user ID entered with the CESN signon
transaction. Typically, EXECUTE authority for DB2 application packages and
plans is granted to the same EUA controlled role-based access RACF group
that also grants access to the CICS transaction that executes the plan .

TSO DB2 applications running in TSO recognize the RACF logon ID that was
used to log on to TSO as the primary authorization ID. It is this primary
authorization ID that must have EXECUTE authority on the application plan
being executed in TSO.

80 CMS DB2 Standards and Guidelines 12/8/2005

Database Migration Procedures

This document outlines procedures required to implement a DB2 application
database at Centers for Medicare & Medicaid Services (CMS). It is intended to
compliment the methodology and procedures described in the DBA Roles and
Responsibilities document for implementing relational databases.

These Application Database Migration procedures are in place to promote
communication and coordination among all affected functional areas (Applications
Development, Data Administration, Database Administration, Capacity Planning,
Computer Operations, Production Control, Media Management, etc.). The Project GTL
is responsible for coordinating the review and participation of all participants listed.
The procedures are designed to ensure the success of the application development
efforts as well as the integrity of the overall database architecture by proactively
identifying items of concern prior to production implementation. The end result of
adherence to these procedures can be a significant reduction of time and effort
required to implement DB2 applications.

The following procedures identify critical points within the application and physical
database development process. Each milestone is substantiated by a formal review.
Because this document focuses on the physical implementation of DB2 databases at
CMS, the identified review points begin after the conceptual and logical design for an
application has been completed and approved.

5.1 DB2 Database Migration Overview
DB2 database objects designed to support applications developed at CMS will follow
a set migration path through the three DB2 subsystem environments (development,
validation, and production). Physical database objects will initially be implemented in
the development DB2 subsystem. All application development activities, including
unit and integration testing, will be accomplished in this environment (note: Some
applications will use a separate DB2 integration environment for testing as well).
When it has been determined that an application is ready for production
implementation, all of the application components, including it's corresponding
database objects, first will be migrated to the validation DB2 subsystem. Because the
Validation and Production DB2 subsystem configurations are similar, final pre-
production verification of the application (including security rules, performance, etc.)
can be accomplished in the Validation environment. Once applications are verified in
Validation, they can be migrated to Production for final implementation.

5.2 Preliminary Physical Database Design Review
Prior to implementing DB2 database objects in the Development DB2 subsystem, a
Preliminary Physical Database Design review must take place. This review not only
provides an opportunity to review and verify the application database architecture,
but also serves as a means to coordinate scheduling and resource requirements.

81 CMS DB2 Standards and Guidelines 12/8/2005

Time frame: Immediately preceding implementation of physical database into the
development environment. [2]

Participants: Application Development [3] , Local and Central DBA, Local and
Central DA, Project GTL or Technical Lead

Purpose: • Review the physical database design (physical and logical
database model, DDL, preliminary space estimates for all
database environments).

• Discuss application architecture and execution environments,
data flows, transaction throughput estimates, number of
users and their locations, etc.

• Review SQL representative of frequently executed and/or
more complex queries.

• Discuss application project plan, preliminary application
migration strategies & time frames as well as impact on
existing target environment.

Input: • Database models: physical and approved logical

• DDL for all objects to be created (tables, views, indexes,
tablespaces, etc.)

• Application estimates including data volumes, transaction
throughput, expected usage patterns, etc.

• Diagrams or documentation depicting interaction with other
applications

• Sample SQL for more complicated and frequently executed
queries

• Current Project Plan
• All documentation must be provided, via soft copy, to

the Central DBA Group at least 2 weeks prior to the
Preliminary Physical Database Design review meeting.

Output: • Approved preliminary physical database design.

• Implementation schedule for development environment

• Request for additional DASD (if necessary).

• Modified Project Plan to include all necessary migration steps

Criteria: • Physical database design which conforms to design standards
noted in the DB2 Standards and Guidelines document.

• Consensus from all groups that the physical design as
presented can be implemented.

82 CMS DB2 Standards and Guidelines 12/8/2005

Comments:

[1] Assumptions: Conceptual/Logical Review process completed and approved.

[2] Actual application coding efforts should not begin until the preliminary
physical database design is approved.

[3] Application Development includes representatives from the application
development group responsible for the new/changed application as well as
representatives from any application that is in some way affected by the
new/changed application.

83 CMS DB2 Standards and Guidelines 12/8/2005

5.2.1 Pre-Development Migration Review Checklist
Documentation for Pre-Development walkthrough should be presented to the Central
DBA Group at least ten business days before the scheduled walkthrough date. If this
date is missed your project walkthrough date will be delayed.

Documentation due date: MM/DD/YYYY

It is the responsibility of the project GTL to invite the Central DA, Local DA,
Local DBA, RACF representative and the ENDEVOR representative.

The following topics are mandatory sections that should be included in your
documentation:

• Introduction

• Project plan

• Database models: physical and approved logical
• DDL for all Database ojects to be created

• Architecture (Diagrams depicting interaction with other applications)

• Security requirements (Master ID's/RACF requirements/DB2 Alias usage)

• Expected DASD requirements, transaction throughput

• Sample SQL of the complicated and most frequently executing queries

• Plans for Validation migration (timeline)

• Contact Information

84 CMS DB2 Standards and Guidelines 12/8/2005

http://www.cms.hhs.gov/it/database/db2standards/migrate/mg_02a.asp

5.3 Pre-Validation Migration Review
This review must be conducted prior to migrating database objects to validation.
Database objects are moved to validation when it has been determined that the
corresponding application is ready for production implementation. Due to restricted
database authorities, the central DBA will be responsible for creating the physical
objects (databases, tablespaces, tables, indexes, etc.) in the validation environment
using a Worklist created by the Local DBA. Actual data migration will be the
responsibility of the local DBA for the application. Migration of all other components
for the application (source code, copybooks, datasets, etc.) will be the responsibility
of the Application Development team.

Time frame: Prior to migration of application programs and database objects to
validation environment [1]

Participants: Application Development, Local and Central DBA, Production Control,
Systems Operations, Security Administration, Endevor

Purpose: • Review the physical database design to be implemented,
focusing on any changes made to the design since the
preliminary database design review.

• Review results of the database application architecture
review.

• Review database performance tests results from development
environment (if any) and review database performance
testing criteria for the validation environment.

• Review security requirements and service level agreements
for validation and production environments.

• Review current space requirements for validation and
production environments

• Review database utility job streams (Image Copy, Recover,
Reorg, Runstat…)

• Discuss recovery/synchronization plans and restartability.
• Discuss archive strategy.
• Discuss disaster/recovery plans.
• Review Preliminary Migration Plan and make

recommendations for modifications where appropriate
• Discuss application migration strategies & time frames,

impact on existing target environment, and backout
strategies.

Input: • Current physical model
• DDL for all objects to be created (tables, views, indexes,

tablespaces, etc)
• Documentation from Database Application Architecture

Review (Explain Reports)
• Documented results of database performance tests in

development environment (when applicable)
• Database performance test plan for validation environment

85 CMS DB2 Standards and Guidelines 12/8/2005

• List of user classifications with required authority levels
• Current space estimates for validation and production

environments
• Database utility job streams
• Preliminary Migration Plan (provided by the Local DBA in

conjunction with the Central DBA). See Sample Migration Plan
• Current Project Plan
• All documentation must be provided, via soft copy, to

the Central DBA Group at least 2 weeks prior to the
Pre-Validation Migration Review meeting.

Output: • Approved physical database design
• Accepted database performance test plan for validation

environment
• Approved Migration Plan with detailed backout strategy
• Request for additional DASD for validation and/or production

(if necessary).
• Documented security requirements including RACF groups

and associated authorizations for validation and production
environments.

• Modified Project Plan

Criteria: • Approval by the central DBA staff that the physical database
design as presented can be implemented.

Comments:

[1] Physical database changes identified after an application is moved to
validation must first be implemented in the test environment. These
changes are then subject to a Pre-Validation review prior to migration to
the validation environment

86 CMS DB2 Standards and Guidelines 12/8/2005

5.3.1 Pre-Validation Migration Review Checklist
Documentation for Pre-Validation walkthrough should be presented to the Central
DBA Group at least ten business days before the scheduled walkthrough date. If this
date is missed your project walkthrough date will be delayed.

Documentation due date: MM/DD/YYYY

It is the responsibility of the project GTL to invite the lead application
developers, Local and Central DA, business owner, Production Control,
Security Administration, Endevor.

The following topics are mandatory sections that should be included in your
documentation:

• Introduction

• Project plan

• Physical Database model, DDL for all objects being created

• System architecture

• Performance test results from development/integration test results, test plans
for validation environment

• Security requirements (RACF requirements/list of user classifications with
required authority levels)

• Space requirements for validation, expected space requirements for
production environment(s)

• Database backup/recovery plans, resynchronization procedure (if dependent
on other projects)

• Disaster/recovery schema

• Archiving schema

• Explain reports (representation of the busiest/most important transactions)

• Database utility job streams

• Pre-Validation migration plan with back out contingencies

• Contact Information

87 CMS DB2 Standards and Guidelines 12/8/2005

http://www.cms.hhs.gov/it/database/db2standards/migrate/mg_04a.asp

5.4 Pre-Production Migration Review
This review serves as the final review point prior to moving a DB2 application to
production. It is primarily intended to provide an opportunity to coordinate the
efforts of all affected functional areas (Applications Development, Database
Administration, Capacity Planning, Systems Operations, Production Control, etc.). All
DB2 applications presented for Pre-Production Migration Review must first migrate to
the DB2 Validation environment.

Time frame: Prior to migration of application programs and database objects to
production environment and after application has been verified in
validation environment.

Participants: Application Development, Local and Central DBA, Systems
Operations, Capacity Management, Security Administration,
Production Control, Endevor

Purpose: • Review database performance test results from validation
environment.

• Review security requirements and service level agreements
for production environment.

• Verify space requirements for production environment.

• Review batch utility job streams and job scheduling
requirements.

• Discuss application migration strategies & time frames,
impact on existing target environment, and backout
strategies.

• Discuss recovery/synchronization plans and restartability.

• Discuss archive strategy.

• Discuss disaster/recovery plans.

Input: • Stress test results from validation environment

• Current space estimates for production environment and
verification that required DASD is available should be
approved by the Central DBA.

• Documented security requirements including RACF groups
and associated authorizations for production environment
(from Pre-Validation Review) with sign-off from data
custodian

• Documented service level agreements

• Database utility job streams (Image Copy, Recover, Reorg,
Runstat…) and scheduling requirements

• Current project plan

• Preliminary migration plan (provided by Local DBA in
conjunction with the Central DBA)

• All documentation must be provided, via soft copy, to

88 CMS DB2 Standards and Guidelines 12/8/2005

the Central DBA Group at least 2 weeks prior to the
Pre-Production Migration Review meeting.

Output: • Approval for the application and database objects to move to
production

• Approved Migration Plan (with detailed backout strategy) for
application programs and database objects

• Approved security requirements including RACF groups and
associated authorizations for production environment.

Criteria: • Approval by the central DBA staff that the physical design as
presented can be implemented

89 CMS DB2 Standards and Guidelines 12/8/2005

5.4.1 Pre-Production Migration Review Checklist
Documentation for Pre-Production walkthrough should be presented to the Central
DBA Group at least ten business days before the scheduled walkthrough date. If this
date is missed your project walkthrough date will be delayed.

Documentation due date: MM/DD/YYYY

It is the responsibility of the project GTL to invite the lead application
developers, Local and Central DA, business owner, Production Control,
Security Administration, Endevor.

The following topics are mandatory sections that should be included in your
documentation:

• Introduction

• Project plan

• Physical Database model, DDL for all objects being created

• System architecture

• Documented service level agreements

• Stress/performance test results from validation

• Security requirements (RACF requirements/list of user classifications with
required authority levels) with sign-off from data custodian

• Space requirements for production environment(s)

• Database backup/recovery procedure(s), resynchronization procedure (if
applicable)

• Disaster/recovery procedure(s)

• Archiving procedure(s)

• Explain reports (representation of the busiest/most resource intensive
transactions)

• Database utility job streams (production ready)

• Pre-Production migration plan with back out contingencies

• Contact Information

90 CMS DB2 Standards and Guidelines 12/8/2005

http://www.cms.hhs.gov/it/database/db2standards/migrate/mg_05a.asp

Database Utilities
A full suite of DB2 utilities are available at CMS that provide for overall
administration of DB2 database objects. Primarily, these utilities are available to
Corporate and Project DBAs. Project DBAs may, if appropriate, grant access to a
limited number of these utilities to application developers as well.
CMS supports DB2 utilities from two primary vendors, IBM and BMC Software. Many
products from both vendors overlap in functionality, however, there is a considerable
difference in the performance of each. Therefore, CMS has established a standard set
of utilities (with vendor designation) that must be adhered to when creating DB2
utility jobs intended for production. The following documents these standards.

6.1 CMS Standard DB2 Utilities

The following matrix indicates the CMS's vendor selection for DB2 utilities. All DB2
utility jobs intended for migration to the CMS production environment must be
developed using these designated tools. Please refer to the appropriate vendor
reference manual for specific execution procedures.

Utility Vendor Product

Check Data IBM CHECK DATA*

Imagecopy BMC Copy Plus

Load BMC Load Plus

Modify IBM MODIFY*

Quiesce IBM QUIESCE*

Rebuild Index IBM REBUILD INDEX*

Recover BMC Recover Plus

Reorg BMC Reorg Plus

Runstats BMC BMC Stats

Unload BMC Unload Plus

91 CMS DB2 Standards and Guidelines 12/8/2005

* These utilities are initiated from the IBM utility driver program DSNUTILB

6.2 How to Guides for BMC utilities

6.2.1 Compare DDL to DB2 Catalog
BMC Change Manager (CM) includes a feature that will compare database object
descriptions from a DDL script to actual database structures on a DB2 subsystem. It
is this feature that can be used to determine what database changes should be
incorporated to DB2 as a result of modifications to a physical schema in ERwin.

To use the feature choose option 2 (Compare) from the Change Manager Main Menu.

Enter Compare1 Type "2" (Catalog) and Compare Type "3" (DDL) on the Compare
Interface panel and press enter.

92 CMS DB2 Standards and Guidelines 12/8/2005

On the next panel, Compare Interface Panel 2, specify the name of the dataset which
contains the DDL uploaded from ERwin.

Indicate the Source for Scope. The value you specify in this field will direct CM as to
which objects it should inspect to detect differences. If you select 1 (Baseline Profile)
or 2 (Migrate Profile), CM will look to the scope rules specified in either of these
profile types to determine which objects to inspect. Specifying either of these types
will require that you create a Baseline or Migrate profile before using the compare
option. You must also specify the name of the profile in the Scope Profile field.

If you select Scope Type 3 (DDL), CM will compare the objects referenced in the DDL
script against the catalog. This method is generally the correct approach if database
changes are always initiated from ERwin. In our example, we assume this is the
case.

From the Compare Interface Panel 2, also provide the dataset name where the JCL to
execute the compare process should be written along with the name of the dataset
where CM should write the CDL (CM's description of identified changes). Optionally,
also indicate whether a change report should be generated and if so, to what
dataset. Place an "S" in the Create JCL and Edit JCL fields and press enter.

93 CMS DB2 Standards and Guidelines 12/8/2005

JCL to execute the compare in batch will be generated and displayed on your screen.
You will have the ability to modify this JCL, if necessary, prior to executing it. Verify
that the information (especially your Jobcard) is correct and submit the job.

Note that if you entered an "S" in the SUBMIT JCL field of the previous panel, you
can submit the job by pressing PF3 from this panel and enter from the next panel.

94 CMS DB2 Standards and Guidelines 12/8/2005

Once the job is complete, view the output in IOF and verify it ran successfully. A
maximum condition code of "4" indicates a successful execution. The next two
screens provide sample reports that will be generated as part of the compare
process. Phase 4 of the compare provide counts of the objects that are different
between the DDL and the Catalog. Phase 5 provides a count of the objects that will
be created, modified, or deleted in the CDL generated from this step.

Once you have reviewed the output of the compare job and are satisfied with the
results, proceed to the next step, Create a Workid.

6.2.2 Import CDL to Workid
When using CDL to specify database changes in BMC Change Manager (CM), it is
necessary to first Import the change definitions (CDL) into your workid. The Import
process will read the CDL and convert it to change specifications in your workid. To
use this feature, choose option 3 in the WORKID Action Menu and press enter.

95 CMS DB2 Standards and Guidelines 12/8/2005

http://www.cms.hhs.gov/it/database/db2standards/utilities/cm_01_2.asp

On the Import Interface menu, verify that the following options have been selected
and press enter.

On the next Import Interface panel, specify the name of the dataset where JCL to
execute the import process is to be written along with the name of the dataset that
contains the CDL. Generally, this is the dataset name that was created in the
Compare process (see Compare DDL to DB2 Catalog for more details). Place an "S"
in the Create JCL and Edit JCL fields and press enter.

96 CMS DB2 Standards and Guidelines 12/8/2005

http://www.cms.hhs.gov/it/database/db2standards/utilities/cm_01_6.htm

JCL to execute the import in batch will be generated and displayed on your screen.
You will have the ability to modify this JCL, if necessary, prior to executing it. Verify
that the information (especially your jobcard) is correct and submit the job.

Note that if you entered an "S" in the SUBMIT JCL field of the previous panel, you
can submit the job by pressing PF3 from this panel and enter from the next panel.

Once the job is complete, view the output in IOF and verify it ran successfully. A
maximum condition code of "4" indicates a successful execution. When you have
completed the import process, move on to the next step, Analyze the Workid.

97 CMS DB2 Standards and Guidelines 12/8/2005

http://www.cms.hhs.gov/it/database/db2standards/utilities/cm_01_4.asp

Database Performance Monitoring

7.1 TOP 10 SQL Performance Measures
In an effort to proactively monitor the efficiency of the SQL statements executing in
the production DB2 subsystems, the Central DB2 DBA staff has developed a set of
reports for capturing high usage SQL statements. The reports come from the BMC
APPTUNE product and will consist of one static SQL report and one dynamic SQL
report per day for each production subsystem (DB2W will have only a static report).
Each daily report will have the Top 10 SQL statements that used the most total CPU
time.

Subsystem Static Report Dynamic Report

DB1P Yes Yes

DB2P Yes Yes

DB3P Yes Yes

DB2W Yes NO*

* Collecting SQL data for DB2W exhausted the available storage allocated to the
APPTUNE product and had to be turned off.

The complete reports are stored on the mainframe for 90 days and have the
following GDG names:

Subsystem
Static Report GDG Dataset

Name
Dynamic Report GDG

Dataset Name

DB1P P@DBA.@DB2.DB1P.TOP10.SF301 P@DBA.@DB2.DB1P.TOP10.DF301

98 CMS DB2 Standards and Guidelines 12/8/2005

DB2P P@DBA.@DB2.DB2P.TOP10.SF301 P@DBA.@DB2.DB2P.TOP10.DF301

DB3P P@DBA@DB2.DB3P.TOP10.SF301 P@DBA.@DB2.DB3P.TOP10.DF301

DB2W P@DBA@DB2.DB2W.TOP10.SF301 Not Collected

The data from each of these reports will be stored for 90 days in a DB2 table named
SYS$ADM.DBA_TOP10_PERF. The table structure is as follows:

Column Name Column Description

SSID DB2 Subsystem ID – DB1P ,DB2P, DB3P, DB2W

INTERVAL_DATE Date that SQL executed

RPT_TYPE Report Type – SF301 for Static, DF301 for Dynamic

OWNER Object Owner

COLLID Collection ID

PACKAGE Package Name

STMTNO SQL Statement ID

SQL_CALLS Number of Times SQL was executed

TOT_CPU_TIME Total CPU Time Consumed by the SQL

AVG_CPU_TIME Average CPU Time for One Execution of the SQL

TOT_ELAP_TIME Total Elapsed Time Consumed by the SQL

AVG_ELAP_TIME Average Elapsed Time for One Execution of the SQL

On a weekly basis each Central DBA will be responsible for analyzing an SQL that is
at the top of the Top 10 report for their respective applications and make
recommendations and take actions to attempt to improve the performance of the
high usage SQL. Please note that Central DBAs can only make
recommendations and do not have the authority to require an application to
make a change. A spreadsheet named the WeeklyTop10Analysis.xls will be used to

99 CMS DB2 Standards and Guidelines 12/8/2005

track the status of this analysis and will be stored on the CMS network
(H:\DB2DBA\WeeklyTop10Analysis.xls).

In addition a weekly report will be emailed to those interested providing a list of the
Top 45 SQL that used the most Total CPU Time for the week.

IBM Manuals and Publications
Use the following link to access IBM’s manuals and publications for their DB2
product:

http://www-4.ibm.com/software/data/db2/os390/library.html

Note: This is an external link that is not the responsibility of, or under the control of,
the Centers for Medicare & Medicaid Services (CMS). CMS does not endorse any
products, services or web sites.

100 CMS DB2 Standards and Guidelines 12/8/2005

http://www-4.ibm.com/software/data/db2/os390/library.html

Glossary

Glossary of Terms

active log
The portion of the DB2 log to which log records are written as they are generated.
The active log always contains the most recent log records, whereas the archive log
contains those records that are older and will no longer fit on the active log.

alias
An alternate name that can be used in SQL statements to refer to a table or view in
the same or a remote DB2 subsystem.

application plan
A control structure used by DB2 to process SQL statements during the execution of
an application. The application plan is created during the BIND process.

application package
An object containing a set of SQL statements that have been bound statically and
that are available for processing.

archive log
The portion of the DB2 log that contains log records that have been moved (off-
loaded) from the active log because there is no more space for them in the active
log.

BIND
The DB2 statement that creates an application plan or package. A DB2 bind is to SQL
what a compile and link edit is to host language source code. The BIND process
determines which access paths to the data the application plan will utilize. BINDs can
be done automatically and dynamically.

BSDS (Boot Strap DataSet)
A VSAM KSDS dataset that contains name and status information for DB2, as well as
relative byte address (see RBA below) range specifications for all active and archive
log datasets. It also contains passwords for the DB2 Directory and Catalog, and lists
of conditional restart and checkpoint records.

bufferpool
The main storage reserved to satisfy the buffering requirements for one or more
table- spaces or indexes.

CESN

101 CMS DB2 Standards and Guidelines 12/8/2005

The kind of sign-on transaction used in CICS during which the User ID is entered.

CICS (Customer Information Control System)
One of three (TSO, CICS, IMS) MVS host environments for which DB2 provides
services to manage the interface between the host address space and DB2 address
space.

clustering index
The index that determines how rows are physically ordered in a tablespace.

collection
An ID or qualifier which is assigned to DB2 packages. Used to manage packages in
logical groups.

column
The equivalent of a conventional data field that are the attributes of rows.

COMMIT
A SQL statement that terminates a unit of recovery. A COMMIT releases all locks.
Data that was changed is made permanent within the database.

commit point
A point in time when data is considered consistent. See point-of-consistency
below.

constraint
A rule that limits the values that can be inserted, deleted, or updated in a table.

DASD (Direct Access Storage Device)
The physical volume where data is stored.

database
A collection of DB2 objects. When you define a database, you give a name to an
eventual collection of tables, indexes, and tablespaces in which they reside. A single
database, for example, may contain all the data associated with beneficiaries
(names, provider ID, Medicaid classification, etc.). Databases do not physically exist
but are a logical group of DB2 objects that DB2 uses to assign certain authorities and
that permit sensible management of data.

DB2 Catalog
DB2-maintained tables that contain descriptions of DB2 objects such as tables,
views, indexes, and authorizations.

102 CMS DB2 Standards and Guidelines 12/8/2005

DB2 Directory
The system database that contains internal objects such as database descriptors,
skeleton cursor tables, and opening/closing log of relative byte addresses (RBA) for
tablespaces.

DB2 command
An instruction to the DB2 subsystem allowing a user to start or stop DB2, to display
information on current users, to start or stop databases, to display information on
the status of databases and so on. These commands are generally entered using the
DSN Command Processor in DB2 Interactive (DB2I).

DB2 Interactive (DB2I)
The DB2 facility that provides for the execution of SQL statements, DB2 (operator)
commands, programmer commands and utility invocation.

DB2 Objects
DB2 data objects are databases, storage groups, tablespaces, tables, indexes,
indexspaces and views. A more detailed description of these objects can be found in
the IBM DB2 Administration Guide. In general, an object is anything you can create
or manipulate with SQL.

DB2 utility
A standard MVS batch job which requires that DB2 be running. Example DB2 utilities
are COPY, LOAD, QUIESCE and REORG.

DBRM (Database Request Module)
The module that contains information about SQL statements in an application
program. The DBRM is created as output from the DB2's precompiler and used as
input to the BIND process.

DCL (Data Control Language)
One of the three components of SQL (the others being DDL and DML) comprised of
SQL statements that control authorization to access and use the database, i.e. grant
and revoke DB2 privileges.

DCLGEN (Declarations Generator)
A subcomponent of DB2 which automatically generates host language declarations
(e.g., COBOL copybooks) for SQL tables. In other words, the general copy library for
tables.

DDL (Data Definition Language)
One of the three components of SQL (the others being DCL and DML) comprised of
SQL statements that define objects that make up the databases, i.e., create, alter
and delete DB2 objects.

103 CMS DB2 Standards and Guidelines 12/8/2005

distinct type
A user-defined data type that is internally represented as an existing type (its source
type), but is considered to be a separate and incompatible type for semantic
purposes.

DML (Data Manipulation Language)
One of the three components of SQL (the others being DCL and DDL) comprised of
SQL statements that retrieve and update the data, i.e., select, insert, update and
delete data.

DMS (Disk Management Storage)
A disk management tool used to manage DASD pools.

DRDA (Distributed Relational Database Architecture)
The kind of database architecture using the relational data model and where some or
all data is stored on a computer different from the computer used by programs or
users that access the data.

dynamic SQL
SQL statements are created, prepared, and executed while a program is executing.
Therefore, it is possible with dynamic SQL to change the SQL statement during
program execution and have many variations of a SQL statement at run time.

embedded dynamic SQL
SQL statements that are not completely composed at the time the application in
which the statement is embedded is prepared. Instead, the statements are prepared
and executed while the program is executing. In dynamic SQL, the SQL source is
contained in host language variables rather than being coded into the application
program. The SQL statement can change several times during the application
program's execution. SQL which is coded within an application program.

embedded static SQL
Also known as static SQL, these are SQL statements that are created and prepared
before program execution. After the SQL statement is embedded in an application,
the only variance allowed at execution is in the values of the host variables.

entity
Any person, place, thing, or event about which the enterprise collects data.

foreign key
A column, or combination of columns, whose values must match those of a primary
key in another table in order to maintain a relationship between tables. A given

104 CMS DB2 Standards and Guidelines 12/8/2005

foreign key value represents a reference from the row(s) containing it to the row
containing the matching primary key value.

HDCUG
Abbreviation for CMS Data Center Users' Guide.

host structure
A group of host variables. A host structure is defined using host language
statements.

host variable
Any data element declared in a host language (COBOL, PL/1, etc) that is referenced
in an embedded SQL statement. Host variables are used to transfer data to and from
DB2, evaluate a WHERE or HAVING clause, receive or assign special register values
such as CURRENT DATE or CURRENT SQLID, or set or detect the existence of NULL
values.

image copy
An exact reproduction of all or part of a tablespace. The DB2 COPY utility can make
full image copies (to copy the entire tablespace) or incremental image copies (to
copy only those pages modified since the last image copy).

index
An index is an ordered set of pointers to data in a table and is stored separately from
the table. Each index is a separate physical structure based on data values in one or
more columns of the table. Once an index is created, it is maintained by DB2 so that
DB2 decides when to use or not to use the index to access data in the table. Indexes
can be used to enforce uniqueness of rows in a table and enhance the performance
of data retrieval operations.

indexspace
A page set used to physically store the entries of one index (or index partition);
automatically assigned when an index is created.

key
A column or an ordered collection of columns identified in the description of a table,
index, or referential constraint.

KSDS (Key Sequenced Dataset)
A type of data organization used by VSAM datasets that uses key sequences.

leaf page
The lowest-level index page which contains the keys and record IDs (RIDs) that
identify individual rows in the related table.

105 CMS DB2 Standards and Guidelines 12/8/2005

lock
A control structure used to serialize data updates and thereby prevent access to
inconsistent data during concurrent access by multiple users.

log
A collection of records that describe the events that occur during DB2 execution and
their sequence. The information recorded is used for recovery in the event of a
failure during DB2 execution. Each log record is identifiable by the relative byte
address (RBA) of the first byte of its header. The record's RBA (see log RBA below)
is a similar timestamp in that it uniquely identifies records that start at a particular
point in the continuing log.

log RBA (Relative Byte Address)
The address of each byte in the DB2 log obtained by its offset from the beginning of
the log.

MVS (Multiple Virtual Storage)
IBM application development platform using virtual storage where each job to be
executed is assigned its own range of addresses (address space) between 0 and 16
megabytes.

nonleaf page
A page in an index structure that contains keys and page numbers of subordinate
nonleaf or leaf pages. The nonleaf page never points directly to data.

null
A data state that indicates the absence of information.

object
Anything that can be created or manipulated with SQL -- that is, databases,
tablespaces, tables, views, or indexes. See DB2 Objects above.

ODBC (Open Data Base Connectivity)

package
see application package.

page
A unit of storage within a tablespace (4K or 32K) or indexspace (4K) that is the unit
of I/O. In a tablespace, a page contains one or more rows of a table.

page set

106 CMS DB2 Standards and Guidelines 12/8/2005

The total collection of pages that make up an entire table space or index space. Each
page set is made from a collection of VSAM data sets.

plan
See application plan.

point-of-consistency
A point in time at which all data is static and consistent. There are three types of
point-of-consistency: 1) an application point-of-consistency guarantees the integrity
of the application data at a particular point in time; 2) a tablespace set point-of-
consistency refers to those points at which all of the data in a set of tablespaces is
static and consistent; 3) a system point-of-consistency refers to those points in a
DB2 system at which all data -- both system and user -- within that system are
static and consistent.

primary key
A column, or combination of columns, within a table whose values together form the
"principal unique identifier" of rows in that table. In other words, a table's primary
key serves to uniquely identify each row in that table and consists of those columns
required to ensure that no duplicate rows occur in the table. This non-duplication
ensures that each instance of the entity (the table) is unique.

quiesce point
An established point that corresponds to a point-of-consistency for all identified
tablespaces in the control statement. The value of the quiesce point (log RBA) is
stored in the catalog table SYSIBM.SYSCOPY.

RACF (Resource Access Control Facility)
A security system that controls access to production resources by assigning
privileges to users.

RBA (Relative Byte Address)
See Log RBA above.

RCT (Resource Control Table)
CICS System table containing parameter settings which control application
connections between CICS and DB2. The RCT is used by the CICS attachment facility
to govern the way in which DB2 resources are accessed. Rules specified in the RCT
include the method DB2 should use to allocate application plans, check
authorizations, allocate resources, etc.

RDBMS (Relational Data Base Management System)
A kind of database management system (DBMS) based on the relational data model
in which the DBMS presents the complete information content of the database to the
user as a collection of two-dimensional tables (columns and rows).

107 CMS DB2 Standards and Guidelines 12/8/2005

recovery
The process of rebuilding databases after a system or application failure.

recovery log
See log above.

referential integrity
The condition that exists when all intended references from data in one column of a
table to data in another column are valid. It maintains the consistency of
relationships between tables by requiring every foreign key value in a table to have a
matching primary key value in a corresponding table or else be labeled null.

RID (Record IDentifier)
The internal record identifier used to locate a given row in a table. It is composed of
the page number and record ID within the page.

row
The smallest unit of data in a table that can be inserted or deleted; physically stored
as records on a page. It is one instance of the entity that its table represents;
conventionally called the record occurrence.

schema
A logical grouping for user-defined functions, distinct types, triggers, and stored
procedures. When an object of one of these types is created, it is assigned to one
schema, which is determined by the name of the object. For example, the following
statement creates a distinct type T in schema C:
CREATE DISTINCT TYPE C.T ...

SQL (Structured Query Language)
A database language, originally developed by IBM, to support the definition,
manipulation, and control of data in a relational database.

SQLCA (SQL Communication Area)
The communication block of variables used by DB2 to inform an application program
of the status of the system as a result of a prior SQL call.

SQLCODE
Variable passed from DB2 to an application program, tool, or utility which indicates
the status of the most recently issued executable SQL call. SQLCODE can take on
one of three values: 1) SQLCODE = 0 indicates that the last SQL command executed
successfully; 2) SQLCODE >0 indicates the last SQL command executed successfully
with some warnings; and 3) SQLCODE < 0 indicates that an error condition was
encountered and the last SQL command did not execute successfully.

108 CMS DB2 Standards and Guidelines 12/8/2005

SQLDA (SQL Descriptor Area)
The group of variables used in the execution of some SQL statements. It is used in
application programs containing embedded dynamic SQL.

SPUFI (SQL Processor Using File Input)
A subcomponent of DB2I that allows interactive access to data from TSO. It allows a
user to execute SQL statements without embedding them in a program.

storage group
A named set of direct access storage device (DASD) volumes from which DB2
automatically allocates storage space, defines the necessary VSAM datasets, and
extends or deletes them as required.

stored procedure
A user-written application program that can be invoked through the use of the SQL
CALL statement.

subject area
A high-level category of data that exists in an organization. Subject areas are based
on broad grouping of entities that an enterprise is concerned with in performing its
work.

table
Collections of rows (also called tuples) having the same columns (attributes). It
contains data about a given entity. The rows of a table are unordered and physically
stored in a tablespace. For example, a beneficiary entity (table) would consist of a
row for each beneficiary and columns such as beneficiary ID, beneficiary name, and
beneficiary status. A table may be defined to have a primary key, a column or set of
columns whose values uniquely identify each row (beneficiary ID in the beneficiary
entity).

table check constraint
A user-defined constraint that specifies the values that specific columns of a base
table can contain.

tablespace
A tablespace is a VSAM dataset in which one or more tables are stored. It is a
physical object for which disk space is allocated using primary and secondary
quantities. A tablespace is broken up into pages of four kilobytes each. Many DB2
utilities including RUNSTATS, REORG and COPY, run against tablespaces (not tables).

tablespace set

109 CMS DB2 Standards and Guidelines 12/8/2005

The group of all tables related to each other through referential constraints, and
which must be recovered to the same point-of-consistency.

thread
The DB2 structure that defines a connection between an application and DB2 in order
to control access. At any given time, the number of active threads equals the
number of users (programs, utilities, interactive users, etc.) accessing DB2. If the
maximum number of concurrent threads (set at installation) is exceeded, an
application must wait until a thread becomes available.

trigger
A set of SQL statements that are stored in a DB2 database and executed when a
certain event occurs in a DB2 table.

user-defined function (UDF)
A function that is defined to DB2 by using the CREATE FUNCTION statement and that
can be referenced thereafter in SQL statements. A user-defined function can be an
external function, a sourced function, or an SQL function. Contrast with built-in
function.

view
A view is a logical table that is derived from combining tables and/or other views into
a single, logical table. A view can also be a subset of columns from a single table or
view. Like a table, a view consists of rows and columns, but unlike a table, the data
in a view is not physically stored. A view is defined to DB2 by referencing other views
or tables, and the definition of the view is the only thing that is physically stored in
the DB2 Catalog. When a user references a view, DB2 assembles the data from the
underlying tables and views according to the definition. It is essentially transparent
to the user whether the base table or logical view is being used. Views are a powerful
tool used in relational databases to simplify SQL coding and can be used as a
security device to restrict which columns of a table a user can access.

value
The intersection of a column and a row which is the smallest unit of data that can be
retrieved or changed.

VSAM (Virtual Storage Access Method)
A mass storage access method that contains logical rather than physical datasets.

110 CMS DB2 Standards and Guidelines 12/8/2005

	Overview
	DB2 Database Design Standards
	1.1 DB2 Design Overview
	1.2 Databases
	1.2.1 Object Usage
	1.2.2 Required Parameters (DDL Syntax)

	1.3 Tablespaces
	1.3.1 Object Usage
	1.3.2 Required Parameters (DDL Syntax)

	1.4 Tables
	1.4.1 Object Usage
	Required Parameters (DDL Syntax)

	1.5 Columns
	1.5.1 Object Usage
	1.5.2 Required Parameters (DDL Syntax)

	1.6 Referential Constraints (Foreign Keys)
	1.6.1 Object Usage
	1.6.2 Required Parameters (DDL Syntax)

	1.7 Table Check Constraints
	Object Usage
	1.7.2 Required Parameters (DDL Syntax)

	1.8 Unique Constraints
	1.8.1 Object Usage
	Required Parameters (DDL Syntax)

	1.9 ROWID
	1.9.1 Object Usage
	1.9.2 Required Parameters (DDL Syntax)

	1.10 Identity Columns
	1.10.1 Object Usage
	1.10.2 Required Parameters (DDL Syntax)

	1.11 Views
	1.11.1 Object Usage
	Required Parameters (DDL Syntax)

	1.12 Indexes
	1.12.1 Object Usage
	1.12.2 Required Parameters (DDL Syntax)

	1.13 Table Alias
	Object Usage
	Required Parameters (DDL Syntax)

	1.14 Synonyms
	1.14.1 Object Usage

	1.15 Stored Procedures
	1.15.1 Object Usage
	1.15.2 Required Parameters (DDL Syntax)

	1.16 User Defined Functions
	1.16.1 Object Usage

	1.17 User Defined Types
	1.17.1 Object Usage

	1.18 Triggers
	Object Usage
	1.18.2 Required Parameters (DDL Syntax)

	1.19 LOBs
	1.19.1 Object Usage

	1.20 Buffer Pools
	Object Usage
	Required Parameters (DDL Syntax)

	1.21 Space Requests
	1.22 Capacity Planning

	Application Programming
	2.1 Data Access (SQL)
	2.2 Application Recovery
	2.3 Program Preparation
	2.3.1 DB2 Package
	2.3.2 DB2 Plan
	2.3.3 Explain

	2.4 DB2 Development Tools
	2.4.1 SPUFI (SQL Processing Using File Input)
	2.4.2 QMF (Query Management Facility)
	2.4.2.1 QMF Adhoc Usage
	2.4.2.2 QMF Application Development (QMF Import Facility)
	2.4.2.3 Developing QMF Applications

	2.4.3 SAS
	DB2/SAS Basics
	2.4.3.2 Connecting to DB2
	2.4.3.3 Disconnecting from DB2
	Reading DB2 Data
	2.4.3.5 Receiving DB2 Error Messages
	2.4.3.6 Modifying DB2 Data

	Quickstart/MVS
	Overview
	2.4.4.2 Program Enhancements
	Program Preparation
	JCL Enhancements
	2.4.4.5 Examples

	Naming Standards
	3.1 Conventions for Objects and Datasets
	3.1.1 Standard Naming Format for DB2 Objects
	3.1.2 Standard Application Identifiers

	3.2 DB2 Subsystem Names
	3.3 Production Library Names
	3.4 Test Library Names
	3.5 Image Copy Dataset Names
	3.6 Utility Job Names
	3.7 DB2/ORACLE Naming Issues

	Security
	4.1 DB2 Security Administration
	Development
	4.1.1.1 RACF Groups
	4.1.1.2 Application Database
	4.1.1.3 Preliminary Privileges (central DBA)
	4.1.1.4 Application Plans
	4.1.1.5 Application Packages
	4.1.1.6 Plan Table (Application Developers)
	4.1.1.7 Catalog Access
	4.1.1.8 Central DBA Policies

	4.1.2 Validation
	4.1.2.1 RACF Groups
	4.1.2.2 Application Database
	4.1.2.3 Preliminary Privileges (Central DBA)
	Additional Privileges (local DBA)
	4.1.2.4 Application Plans
	4.1.2.5 Application Packages
	4.1.2.6 General Authorizations

	4.1.3 Production
	4.1.3.1 RACF Groups
	4.1.3.2 Application Database
	Preliminary Privileges (central DBA)
	4.1.3.3 Application Plans
	4.1.3.4 Application Packages
	4.1.3.5 General Authorizations

	4.2 RACF Security Administration
	4.2.1 Administering RACF Groups

	4.3 Accessing DB2 Resources
	4.3.1 Dynamic SQL Applications (SPUFI, SAS, QMF, DB2 Connect
	4.3.2 Static SQL Applications
	4.3.3 Execution Environments

	Database Migration Procedures
	5.1 DB2 Database Migration Overview
	5.2 Preliminary Physical Database Design Review
	5.2.1 Pre-Development Migration Review Checklist

	5.3 Pre-Validation Migration Review
	5.3.1 Pre-Validation Migration Review Checklist

	Pre-Production Migration Review
	5.4.1 Pre-Production Migration Review Checklist

	Database Utilities
	CMS Standard DB2 Utilities
	6.2 How to Guides for BMC utilities
	6.2.1 Compare DDL to DB2 Catalog
	6.2.2 Import CDL to Workid

	Database Performance Monitoring
	7.1 TOP 10 SQL Performance Measures

	IBM Manuals and Publications
	Glossary
	Glossary of Terms

